Skip to main content

Flet for Python - easily build interactive multi-platform apps in Python

Project description

Flet - quickly build interactive apps for web, desktop and mobile in Python

Flet is a rich User Interface (UI) framework to quickly build interactive web, desktop and mobile apps in Python without prior knowledge of web technologies like HTTP, HTML, CSS or JavaSscript. You build UI with controls based on Flutter widgets to ensure your programs look cool and professional.

Requirements

  • Python 3.7 or above on Windows, Linux or macOS

Installation

pip install flet

Create the app

Create main.py file with the following content:

import flet as ft

def main(page: ft.Page):
    page.title = "Flet counter example"
    page.vertical_alignment = ft.MainAxisAlignment.CENTER

    txt_number = ft.TextField(value="0", text_align=ft.TextAlign.RIGHT, width=100)

    def minus_click(e):
        txt_number.value = str(int(txt_number.value) - 1)
        page.update()

    def plus_click(e):
        txt_number.value = str(int(txt_number.value) + 1)
        page.update()

    page.add(
        ft.Row(
            [
                ft.IconButton(ft.icons.REMOVE, on_click=minus_click),
                txt_number,
                ft.IconButton(ft.icons.ADD, on_click=plus_click),
            ],
            alignment=ft.MainAxisAlignment.CENTER,
        )
    )

ft.app(main)

Run as a desktop app

The following command will start the app in a native OS window:

flet run main.py

Sample app in a native window

Run as a web app

The following command will start the app as a web app:

flet run --web main.py

Sample app in a browser

Learn more

Visit Flet website.

Continue with Python guide to learn how to make a real app.

Browse for more Flet examples.

Join to a conversation on Flet Discord server.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

robocorp_flet-0.4.2.3.tar.gz (31.1 kB view details)

Uploaded Source

Built Distributions

robocorp_flet-0.4.2.3-py3-none-win_amd64.whl (19.5 MB view details)

Uploaded Python 3 Windows x86-64

robocorp_flet-0.4.2.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

robocorp_flet-0.4.2.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (16.3 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ARM64

robocorp_flet-0.4.2.3-py3-none-macosx_12_0_arm64.whl (31.0 MB view details)

Uploaded Python 3 macOS 12.0+ ARM64

robocorp_flet-0.4.2.3-py3-none-macosx_10_14_x86_64.whl (31.0 MB view details)

Uploaded Python 3 macOS 10.14+ x86-64

robocorp_flet-0.4.2.3-py3-none-any.whl (41.8 kB view details)

Uploaded Python 3

File details

Details for the file robocorp_flet-0.4.2.3.tar.gz.

File metadata

  • Download URL: robocorp_flet-0.4.2.3.tar.gz
  • Upload date:
  • Size: 31.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for robocorp_flet-0.4.2.3.tar.gz
Algorithm Hash digest
SHA256 419faf4ee15aaf322b08481c1b011653a6e1d4d0d03282b7098467e9a20372db
MD5 a0fdcbdb060c60cdb073aa6bc0d68ead
BLAKE2b-256 bacfc5538503371d4292e3a6193ecd515e703a056b77e6cb9ab5d92480f964e7

See more details on using hashes here.

Provenance

File details

Details for the file robocorp_flet-0.4.2.3-py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for robocorp_flet-0.4.2.3-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 71ae332b9762b357b25f4f59f6ec3f9d9e8ece7ea182aa7ae9b57e581ec87d7e
MD5 c04dc8a0040324e889ae6d077f7e16c0
BLAKE2b-256 ac9c04301af77fb328796f8673157fdee724b58d4d3c7e564664414ac47350e1

See more details on using hashes here.

Provenance

File details

Details for the file robocorp_flet-0.4.2.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for robocorp_flet-0.4.2.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eed0aca5b36f3272d8130acfb31f1df5f14fbcf9525492d9ef918d8c39a4999a
MD5 6302d9cf04096223a34c4b78bd3fe080
BLAKE2b-256 19442988e3eecb09e48f7262dc54befd273571beb0a09af269fea59f4706b866

See more details on using hashes here.

Provenance

File details

Details for the file robocorp_flet-0.4.2.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for robocorp_flet-0.4.2.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5da30ee80fdafe3715bedd7f0ad6208beac646c57e3f099e27f6d7fd03c2ce7
MD5 8fb3d5d70737f75290c781c8d468ec01
BLAKE2b-256 039317409a2c88b3f60ebf596e7da9579ae51284105ccc1e97c78faf40ff26fb

See more details on using hashes here.

Provenance

File details

Details for the file robocorp_flet-0.4.2.3-py3-none-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for robocorp_flet-0.4.2.3-py3-none-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5df9cf563a019c98a54c9707cd2467b91eb5081c188cc2f973ba896c8042629f
MD5 6117ddadfe2c7fd1b75e56b24439084a
BLAKE2b-256 4c0672a45e84287222f4dc149c6179cbb88c6c31efbc38f0849062301ff5e06c

See more details on using hashes here.

Provenance

File details

Details for the file robocorp_flet-0.4.2.3-py3-none-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for robocorp_flet-0.4.2.3-py3-none-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4461596c72acdc6ae8ec88c95d4c47d9ee44b765bb66b6391217842ffbc79da8
MD5 3a5a6c81b3ad39b2820ecd93e273bafb
BLAKE2b-256 43275c16fdd7c3961f0bf3ebed4f397d95eab935d339a4041296b7ef81902aee

See more details on using hashes here.

Provenance

File details

Details for the file robocorp_flet-0.4.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for robocorp_flet-0.4.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2e1abd5b3439e9394d5aae90c03976c9b5edd454fa9fce17e6e54f0a502ec916
MD5 66a91701b1cb454ba71cd7545a70bb15
BLAKE2b-256 a9d2aff06db0e02263450c9e153c358809f2e4d80b197233618bb0c15689ea3a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page