Skip to main content

Python module for extracting optical physiology ROIs and traces for various file types and formats

Project description

PyPI version Full Tests Auto-release codecov documentation License

ROI Extractors

Python-based module for extracting from, converting between, and handling recorded and optical imaging data from several file formats. Inspired by SpikeExtractors.

Developed by CatalystNeuro.

Getting Started:

Installation:

pip install roiextractors

Usage:

Supported file types:

Imaging

  1. HDF5
  2. TIFF
  3. STK
  4. FLI
  5. SBX

Segmentation

  1. calciumImagingAnalysis (CNMF-E, EXTRACT)
  2. SIMA
  3. NWB
  4. suite2p
  5. Numpy (a data format for manual input of optical physiology data as various numpy datasets)

Functionality:

Interconversion amongst the various data formats as well as conversion to the NWB format and back.

Features:

  1. SegmentationExtractor object:
    • seg_obj.get_channel_names() : List of optical channel names
    • seg_obj.get_num_channels() : Number of channels
    • seg_obj.get_movie_framesize(): (height, width) of raw movie
    • seg_obj.get_movie_location(): Location of storage of movie/tiff images
    • seg_obj.get_image_masks(self, roi_ids=None): Image masks as (ht, wd, num_rois) with each value as the weight given during segmentation operation.
    • seg_obj.get_pixel_masks(roi_ids=None): Get pixel masks as (total_pixels(ht*wid), no_rois)
    • seg_obj.get_traces(self, roi_ids=None, start_frame=None, end_frame=None): df/F trace as (num_rois, num_frames)
    • seg_obj.get_sampling_frequency(): Sampling frequency of movie/df/F trace.
    • seg_obj.get_roi_locations(): Centroid pixel location of the ROI (Regions Of Interest) as (x,y).
    • seg_obj.get_num_rois(): Total number of ROIs after segmentation operation.
    • seg_obj.get_roi_ids(): Any integer tags associated with an ROI, defaults to 0:num_of_rois

SegmentationExtractor object creation:

import roiextractors
import numpy as np

seg_obj_cnmfe = roiextractors.CnmfeSegmentationExtractor('cnmfe_filename.mat') # cnmfe
seg_obj_extract = roiextractors.ExtractSegmentationExtractor('extract_filename.mat') # extract
seg_obj_sima = roiextractors.SimaSegmentationExtractor('sima_filename.sima') # SIMA
seg_obj_numpy = roiextractors.NumpySegmentationExtractor(
        filepath = 'path-to-file',
        masks=np.random.rand(movie_size[0],movie_size[1],no_rois),
        signal=np.random.randn(num_rois,num_frames),
        roi_idx=np.random.randint(no_rois,size=[1,no_rois]),
        no_of_channels=None,
        summary_image=None,
        channel_names=['Blue'],
) # Numpy object
seg_obj_nwb = roiextractors.NwbSegmentationExtractor(
                    filepath_of_nwb, optical_channel_name=None, # optical channel to extract and store info from
                    imaging_plane_name=None, image_series_name=None, # imaging plane to extract and store data from
                    processing_module_name=None,
                    neuron_roi_response_series_name=None, # roi_response_series name to extract and store data from
                    background_roi_response_series_name=None) # nwb object

Data format conversion: SegmentationExtractor to NWB:

roiextractors.NwbSegmentationExtractor.write_segmentation(seg_obj, saveloc,
                    propertydict=[{'name': 'ROI feature 1,
                                   'description': 'additional attribute of each ROI',
                                   'data': np.random.rand(1,no_rois),
                                   'id': seg_obj.get_roi_ids()},
                                  {'name': 'ROI feature 2,
                                   'description': 'additional attribute of each ROI',
                                   'data': np.random.rand(1,no_rois),
                                   'id': seg_obj.get_roi_ids()}],
                    nwbfile_kwargs={'session_description': 'nwbfiledesc',
                                    'experimenter': 'experimenter name',
                                    'lab': 'test lab',
                                    'session_id': 'test sess id'},
                    emission_lambda=400.0, excitation_lambda=500.0)

Example Datasets:

Example datasets are maintained at https://gin.g-node.org/CatalystNeuro/ophys_testing_data.

To download test data on your machine,

  1. Install the gin client (instructions here)
  2. Use gin to download data.
gin get CatalystNeuro/ophys_testing_data
cd ophys_testing_data
gin get-content
  1. Change the file at roiextractors/tests/gin_test_config.json to point to the path of this test data

To update data later, cd into the test directory and run gin get-content

Class descriptions:

  • SegmentationExtractor: An abstract class that contains all the meta-data and output data from the ROI segmentation operation when applied to the pre-processed data. It also contains methods to read from and write to various data formats ouput from the processing pipelines like SIMA, CaImAn, Suite2p, CNNM-E.

  • NumpySegmentationExtractor: Contains all data coming from a file format for which there is currently no support. To construct this, all data must be entered manually as arguments.

  • CnmfeSegmentationExtractor: This class inherits from the SegmentationExtractor class, having all its funtionality specifically applied to the dataset output from the 'CNMF-E' ROI segmentation method.

  • ExtractSegmentationExtractor: This class inherits from the SegmentationExtractor class, having all its funtionality specifically applied to the dataset output from the 'EXTRACT' ROI segmentation method.

  • SimaSegmentationExtractor: This class inherits from the SegmentationExtractor class, having all its funtionality specifically applied to the dataset output from the 'SIMA' ROI segmentation method.

  • NwbSegmentationExtractor: Extracts data from the NWB data format. Also implements a static method to write any format specific object to NWB.

  • Suite2PSegmentationExtractor: Extracts data from suite2p format.

Troubleshooting

Installing SIMA with python>=3.7:

Will need a manual installation for package dependency SIMA since it does not currently support python 3.7:

  1. Download SIMA wheels distribution here.
  2. pip install <download-path-to-wheels.whl>
  3. pip install roiextractors

Funded by

  • Stanford University as part of the Ripple U19 project (U19NS104590).
  • LBNL as part of the NWB U24 (U24NS120057).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

roiextractors-0.5.3.tar.gz (53.6 kB view details)

Uploaded Source

Built Distribution

roiextractors-0.5.3-py3-none-any.whl (68.4 kB view details)

Uploaded Python 3

File details

Details for the file roiextractors-0.5.3.tar.gz.

File metadata

  • Download URL: roiextractors-0.5.3.tar.gz
  • Upload date:
  • Size: 53.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for roiextractors-0.5.3.tar.gz
Algorithm Hash digest
SHA256 30962b8c3df68313e033989e413a72d4b6a5e13b331b3688caba424ccf6d7670
MD5 ca94d41e7881095ab166805a3ee19b64
BLAKE2b-256 e3ad000028d637d1520aecaa24eb3dcdd997118931eea3daaf8de50b59f24089

See more details on using hashes here.

File details

Details for the file roiextractors-0.5.3-py3-none-any.whl.

File metadata

File hashes

Hashes for roiextractors-0.5.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ef1bd35b15df6122b712e155419a0d7599e38a1029cae8b7707b3f1b388e53bb
MD5 d592e5c778d7a09f309df01d34bbd3d1
BLAKE2b-256 366dc3adb5e3127bfad26b194075b5dfe655feb48cacd74dbd4af614aede3f92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page