A simple API for defining sample spaces (to run simple statistical simulations)
Project description
…is a very lightweight Python API for simulating sample spaces, events, random variables, and conditional probabilities.
Why?
Writing this helped me think about random variables as functions mapping from events in a sample space to points in R^n, and about what it means to condition. It’s also useful for checking answers / visualizing statistics problems!
Usage
First, define a subclass of sample_space.Experiment that responds to rerun(). Re-run should perform some random experiment and set instance variables to its results. You can also define functions of those results (such as composing them to form more complex events, or computing values of random variables).
Then, initialize a sample_space.SampleSpace with an instance of an Experiment. You can now query the sample space for the probabilities of your experiment’s events, using the names of experiment variables, methods, or even arbitrary functions of them you pass along in an array. You can make this query conditional, too.
Finally, you can also use SampleSpace to generate a sample of the distribution of a random variable of the experiment, and plot a histogram.
This library also exposes a few basic functions (Bern(p), Bin(n,p), RandomSign(p), and Categ(categories, weights)) to assist with defining experiments.
Example
For a concrete example, check out the iPython notebook example (if you’re reading this on Github), or read the following:
import sample_space
import matplotlib.pyplot as plt
class NCoinTosses(sample_space.Experiment):
def __init__(self, n, p):
self.n = n
self.p = p
def rerun(self):
self.tosses = [sample_space.Bern(self.p) for _ in range(self.n)]
def heads(self):
return sum(self.tosses)
def there_are_at_least_two_heads(self):
return self.heads() >= 2
def first_toss_heads(self):
return self.tosses[0]
space = sample_space.SampleSpace(NCoinTosses(10, 0.5), iters=20000)
# ask for probability of any truthy method
print(space.probability_that('there_are_at_least_two_heads'))
# alias for the above, if it's more grammatical
print(space.probability_of('first_toss_heads'))
# change the number of iterations
print(space.probability_of('first_toss_heads', iters=1000))
# ask for probabilities of functions of random variables
def gt(x): return lambda y: y > x
print(space.probability_that(['heads', gt(5)]))
# ask for conditional probabilities
print(space.probability_that(['heads', gt(5)], given=['first_toss_heads']))
print(space.probability_of('first_toss_heads', given=[['heads', gt(5)]]))
print(space.probability_that(['heads', gt(5)],
given=['first_toss_heads', 'there_are_at_least_two_heads']))
# plot distribution histograms
space.plot_distribution_of('heads')
# plot conditional distribution histograms (with kwargs)
space.plot_distribution_of('heads', given=['first_toss_heads'], bins=10)
License
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file sample_space-0.0.1.tar.gz
.
File metadata
- Download URL: sample_space-0.0.1.tar.gz
- Upload date:
- Size: 3.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c02a1251a8480e070fd9a38aed94e932752fe006cf638a0a6f1c0e3170a37928 |
|
MD5 | a4dbffba2107815e7d44dae4fb4f5378 |
|
BLAKE2b-256 | 6466984c7034c08a3a1180356e62d9b3a857a6d61047727aee5f8e8bd107cf64 |