Skip to main content

Sequence-Adaptive Multimodal SEGmentation (SAMSEG)

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

samseg-0.3a0-cp310-cp310-win_amd64.whl (46.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

samseg-0.3a0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

samseg-0.3a0-cp39-cp39-win_amd64.whl (46.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

samseg-0.3a0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

samseg-0.3a0-cp39-cp39-macosx_10_9_x86_64.whl (48.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

samseg-0.3a0-cp38-cp38-win_amd64.whl (46.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

samseg-0.3a0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

samseg-0.3a0-cp38-cp38-macosx_10_9_x86_64.whl (48.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

samseg-0.3a0-cp37-cp37m-win_amd64.whl (46.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

samseg-0.3a0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

samseg-0.3a0-cp37-cp37m-macosx_10_9_x86_64.whl (48.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file samseg-0.3a0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: samseg-0.3a0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 46.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for samseg-0.3a0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 802c120588ace923081fb94dbbb0bd57bbae1e3772f423b973961e5c5e2f4cb0
MD5 d3f48c022a224d10281e6ec85b80ee06
BLAKE2b-256 0d16f4355bee84205c4dee7f194670cfb6088f74d5a7830c8033758169d1d55a

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.3a0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c4316220fbbbf1592db277b19cbff55f1a815f665d616361e688ca97172e39b
MD5 ae1ecc1487b506810cfd59aa2954b665
BLAKE2b-256 2292fe220db4980a2dfbbf64fd33c591452823fefbe835d15c0e244bfc5e5997

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: samseg-0.3a0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 46.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for samseg-0.3a0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dcb03662faafd85e150300b09836497a46e84042e4202c45594d3f08aa00983a
MD5 be894565b64eab5379f0aed4656e3df0
BLAKE2b-256 23accd79d356fd117fd6e04cbb6b1e4b52adfa3df18e0de913aa9836095ebf6e

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.3a0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd6b8b68b12c769b9657c877316e03f2f477f9190a96afebe99db44e8124cad9
MD5 17b03149b7d1be2e831404980e69af7d
BLAKE2b-256 7180daa3817fb77c114df0007e92e01d7a40a5248f472623c37ea5bb3e0e605e

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.3a0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9e9efb322ad5fdadd4c0f564077d65a037521ba6ae4ce12321ff772110d0c61
MD5 8dc74d800f6bc4c13ab44b8b08b07cc6
BLAKE2b-256 7883dc6ea2e6cfcf73a0488894a9cb23b681c684e832fd764e13ea967316fc5c

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: samseg-0.3a0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 46.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for samseg-0.3a0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b2ef50b228e23bdf4a6b593bb48ed84ab684e0c0c2bf97b2e8eec5bbac84141b
MD5 17715f629ff4c77a51b377ad742341fa
BLAKE2b-256 b2ad1c8f9bcff63e96c552c5139907f2b8b9ece8c98dfe22d5ff507b53ee394d

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.3a0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 812d44c026c006e96bba8b4653a10416dd9f6dc46d5306b9cd3f238d0d13b153
MD5 839bf1d7a66b69d7d9a438dab2ad6c6e
BLAKE2b-256 98be80286ee1d113a6bb1259c1fb780504f053034f000d20a9578750cfc147f1

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.3a0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7347f201a3aae49766ed5e1e8e2822871f3d13da99e66395ef100da02931f477
MD5 973e98508930ffa5d0d08236e3063696
BLAKE2b-256 c440e712fe08603414aea7259d5c47bfa5030cb0873b1cc185cc904884f4d7e4

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: samseg-0.3a0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 46.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for samseg-0.3a0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 df7bf2a965288d25d32c7c1683627ec9a16003332fe162aa46371ab0fa853f0d
MD5 c87f5108e7a64d557992052dad7e43f0
BLAKE2b-256 057dbce7de84fc17f233d45bf429ab1c74f2243ff2d4e4caf96dfe7d57b6bfd8

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.3a0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 939203deeb160a3bef8dccdf4901709c9a9105e34d4818bdd03a614b0d3a9a94
MD5 caa336cfd904e939604b68a1035790ab
BLAKE2b-256 82fa89c9e93ea4130b071185a6b79f7dd44b5ed042b032a86aab68237f5baa32

See more details on using hashes here.

File details

Details for the file samseg-0.3a0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.3a0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d74ddc20d7ea330bc08135849824ced0a946abad0184ea2c2f6e89ee16cab1d5
MD5 ed4702d1515b1a4cafbb293c75d4ec84
BLAKE2b-256 bdf21c9f9ecd9333d6c3739455fd60a6b5c0fa62edfd0e94a61628f8aafa2d67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page