Skip to main content

Sequence-Adaptive Multimodal SEGmenation (SAMSEG)

Project description

SAMSEG

This repository is under construction. Please look at the main repository in the meantime.

TODO: Add segmentation image(s)?

Sequence Adaptive Multimodal SEGmentation (SAMSEG) is a tool to robustly segment dozens of brain structures from head MRI scans without preprocessing. The characteristic property of SAMSEG is that it accepts multi-contrast MRI data without prior assumptions on the specific type of scanner or pulse sequences used. Dedicated versions to handle longitudinal data, or to segment white matter lesions in multiple sclerosis (MS) patients are also available.

TODO: The description above does not include the subregions module. Fix this.

Build Status

Linux Windows MacOS
Build Status Build Status Build Status

Getting Started

SAMSEG runs on 64bit Windows, Linux, and MacOS machines. Please visit the official SAMSEG Wiki and subregions Wiki for instructions.

Most of the functionalities of SAMSEG do not require FreeSurfer to be installed on your system, except:

  • longitudinal registration preprocessing;
  • subregions module.

Installing from source (on *nix)

  1. Clone project: git clone https://github.com/freesurfer/samseg.git

  2. Get the submodules: git submodule init git submodule update

Note that when you switch between branches with different submodule versions (such as dev and itk_update), you can call git checkout <branch> --recurse-submodules to have the submodules automatically updated.

  1. Create a virtual environment using, e.g., conda: conda create -n samseg python=3.9

  2. Activate the virtual environment: conda activate samseg

  3. Install correct compilers for ITK v.4.13.2 conda install -c conda-forge gcc==10.4 gxx==10.4

  4. Create the ITK build directory mkdir ITK-build cd ITK-build

  5. Export compilers installed with conda: export CC=<your_conda_path>/envs/samseg/bin/x86_64-conda_cos6-linux-gnu-gcc export CXX=<your_conda_path>/envs/samseg/bin/x86_64-conda_cos6-linux-gnu-g++

  6. Run CMAKE: cmake -DBUILD_SHARED_LIBS=OFF -DBUILD_TESTING=OFF -DBUILD_EXAMPLES=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../ITK-install ../ITK

  7. Install: make install cd..

  8. Install in development mode (.[test] installs pytest, use just . if you don't want to run tests) ITK_DIR=ITK-install python -m pip install --editable .[test]

  9. If you want to build wheels call ITK_DIR=ITK-install python -m pip wheel . -w ./dist --no-deps

  10. If you're developing and want to run the tests call (in the root of the git repository): pytest samseg

References

If you use these tools in your analysis, please cite:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

samseg-0.4a0-cp311-cp311-win_amd64.whl (47.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

samseg-0.4a0-cp311-cp311-manylinux_2_28_x86_64.whl (51.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

samseg-0.4a0-cp311-cp311-macosx_14_0_arm64.whl (49.3 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

samseg-0.4a0-cp311-cp311-macosx_13_0_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

samseg-0.4a0-cp310-cp310-win_amd64.whl (47.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

samseg-0.4a0-cp310-cp310-manylinux_2_28_x86_64.whl (51.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

samseg-0.4a0-cp310-cp310-macosx_14_0_arm64.whl (49.3 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

samseg-0.4a0-cp310-cp310-macosx_13_0_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

samseg-0.4a0-cp39-cp39-win_amd64.whl (47.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

samseg-0.4a0-cp39-cp39-manylinux_2_28_x86_64.whl (51.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

samseg-0.4a0-cp39-cp39-macosx_14_0_arm64.whl (49.3 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

samseg-0.4a0-cp39-cp39-macosx_13_0_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

samseg-0.4a0-cp38-cp38-win_amd64.whl (47.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

samseg-0.4a0-cp38-cp38-manylinux_2_28_x86_64.whl (51.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

samseg-0.4a0-cp38-cp38-macosx_14_0_arm64.whl (49.3 MB view details)

Uploaded CPython 3.8 macOS 14.0+ ARM64

samseg-0.4a0-cp38-cp38-macosx_13_0_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.8 macOS 13.0+ x86-64

File details

Details for the file samseg-0.4a0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: samseg-0.4a0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 47.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for samseg-0.4a0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 279832ec8dce33c6d2415b84cd4c73db426e22551240b01fd338902ddc5e5fb5
MD5 57f7f6a1fb338171c28012881740a619
BLAKE2b-256 f487cdb4bdfa5ea57006d8f502220ceccb5d8def851623b1eca6bf36ef4a43f3

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b3a569ae6350a4116559600466137b76a10f9bd934d4a7affefbb0f9a707c910
MD5 05d761676a46d597c1a5b98fa06f4421
BLAKE2b-256 11d4e49df6baa19533a4befc5a11ba7b178601ff5a40567dce869e46a7490236

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c637a425fd598478b08564337576b448d0eef350e32281ecd22432eb9880cc52
MD5 29763acf3e93748fa60ce30f99fced34
BLAKE2b-256 e45432d52e2d74960bde2d846f5748caef0b9fbf2022bcea06108eca4fd36991

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 cb7e0380fa5e0e328b3802759bd72a0f39179e923350cd8d1537eb9ee97f3a3b
MD5 a57e48e44118b308f80d86f0c0678193
BLAKE2b-256 766d8d7b77fe9beafe83eeeb180eea7699671ea265a09781d08e5111e70f3272

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: samseg-0.4a0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 47.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.11

File hashes

Hashes for samseg-0.4a0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 78163f3797dadb1fbcf0a9dcb3d9f085816b0d44ac43ab183923fd428b1386f7
MD5 d12250bb3992a03a24a04b78fce5f4ed
BLAKE2b-256 14b67181d216842ee9aa6f57cfbc53319dc37b5aa2eb799483f6e152cdccc61c

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0f81f29548a9f44313a36b2b8a6f748d6e87b4bbddc5aaa7dbf517a66e5aa263
MD5 7708fca1bbfe99f3bc430eb69c8ec8b3
BLAKE2b-256 802d61e2a60e175af584c759d5d585d261c030cc6998b361a28bdb798b1dcb67

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 441616be18e358e228fad02ec69ee51ac184e1eceace33cc84b09a40493247c3
MD5 7f7b8ba69a0cb393a5ac7172a2b926f2
BLAKE2b-256 484f9ae4d0ba0b473ad9c1ef85d9ab3ca736b088dfc1118b808f59c974f91e00

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 737ab92e7a65792fac4ec3fc6465efa981c236a14824e154c9c81e1834b5d910
MD5 52e9e17d2205f088a16d729ffb6ff446
BLAKE2b-256 3d99a5fd6ea4e9399360e9e66b1059b4ae67003a348957a357d8c09b6ebffb15

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: samseg-0.4a0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 47.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for samseg-0.4a0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a5e6edc7fb468b360112430ece8a8b03daa9ab2eaf9db2c88de733b5ef42565c
MD5 ed624fc1cd724503e825452b1cabe056
BLAKE2b-256 ce58bc63b826a632b2014226925d8a15ec1ea476b5cb3a3fe2bdd8b83eb0048f

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fe0f787915aed4889ca10308cd2279ee35865141390173305e21371136fd6403
MD5 de0a29e60f77f8c9eeebad41ca23ad03
BLAKE2b-256 7d67dbed3f15c071883e6bd31a53dee9cbd47bf437566b2139be4a41477dff90

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 811be73ad3778572f19a360b03302296772627569c03e724785734ef2cbb5fbd
MD5 c68ed91f54e5a45a27492ef2d6036cfc
BLAKE2b-256 3e51442dad596aa33a5b30f21eea43b0b6e2adfde1a9441263df51aca543a4b2

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 e8eef85aee8d512f5ba17c498cf201833497b665ccd820e2b0b70b8d26caa324
MD5 d7c8c06f264812a2b682e78bf6af48bd
BLAKE2b-256 69dd92cf455b8a7ffc9d96391f8313a96265f6e01fb5d429519ac4f0e206f749

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: samseg-0.4a0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 47.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for samseg-0.4a0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8fb0be376804d074f987a93f8b8a2f1f739c8a66b23c8cc7e91f538acc7096fd
MD5 45d6824d2a209ddd0821cc585833de36
BLAKE2b-256 a942c12fcbc5269d1f209c45702f31ac5e17cf0a702693e99d0b840246338c34

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 61bc1334b43a3a7cc2bbed5a6130cfb668f2a3c19bdabb2776222da532b630b2
MD5 86938dd320ce03a257357ec537f2f161
BLAKE2b-256 a99193be00209d3532e02896bbd1846cd237ba4b4beb2adee31d15950e84a18c

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5ee4ba0b1b45cea37a3ef729d382961f3951555aa16a39664685bb28fda45dc8
MD5 50f362e244c9a42a58ff3ca5548e3b1e
BLAKE2b-256 f737419d932da327d7affb95a65b7acabd6e0f9915ef2af183239c64fd612c59

See more details on using hashes here.

File details

Details for the file samseg-0.4a0-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for samseg-0.4a0-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 68b38c86f2d762deddd87f79cf3aa8502224e57efc9f98141915e3bad661ff78
MD5 fd4b3c7e20eeea55f7782489c52539b4
BLAKE2b-256 5cbe3dbcf9a3d48ba40a643fcae4661e88ba1baa2057538773e21a69fd52ea9a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page