Skip to main content

Simple python package to sanitize in a standard way ML-related labels.

Project description

Travis CI build SonarCloud Quality SonarCloud Maintainability Pypi project Pypi total project downloads

Simple python package to sanitize in a standard way ML-related labels.

How do I install this package?

As usual, just download it using pip:

pip install sanitize_ml_labels

Tests Coverage

Since some software handling coverages sometime get slightly different results, here’s two of them:

Coveralls Coverage SonarCloud Coverage

Why do I need this?

So you have some kind of plot and you have some ML-related labels. Since I always rename and sanitize them the same way, I have prepared this package to always sanitize them in a standard fashion.

Usage examples

Here you have a couple of common examples: you have a set of metrics to normalize or a set of model names to normalize.

from sanitize_ml_labels import sanitize_ml_labels

# Example for metrics
labels = [
    "acc",
    "loss",
    "auroc",
    "lr"
]

sanitize_ml_labels(labels)

# ["Accuracy", "Loss", "AUROC", "Learning rate"]

# Example for models
labels = [
    "vanilla mlp",
    "vanilla cnn",
    "vanilla ffnn",
    "vanilla perceptron"
]

sanitize_ml_labels(labels)

# ["MLP", "CNN", "FFNN", "Perceptron"]

Extra utilities

Since I always use metric sanitization alongside axis normalization, it is useful to know which axis should be maxed between zero and one to avoid any visualization bias to the metrics.

For this reason I have created the method is_normalized_metric, which after having normalized the given metric validates it against known normalized metrics (metrics between 0 and 1, is there another name? I could not figure out a better one).

from sanitize_ml_labels import is_normalized_metric

is_normalized_metric("MSE") # False
is_normalized_metric("acc") # True
is_normalized_metric("accuracy") # True
is_normalized_metric("AUROC") # True
is_normalized_metric("auprc") # True

New features and issues

As always, for new features and issues you can either open a new issue and pull request. A pull request will always be the quicker way, but I’ll look into the issues when I get the time.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sanitize_ml_labels-1.0.23.tar.gz (6.0 kB view details)

Uploaded Source

File details

Details for the file sanitize_ml_labels-1.0.23.tar.gz.

File metadata

  • Download URL: sanitize_ml_labels-1.0.23.tar.gz
  • Upload date:
  • Size: 6.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for sanitize_ml_labels-1.0.23.tar.gz
Algorithm Hash digest
SHA256 5bee425d8959d5837642768d58561521fbe47cb2a89690a6d39b2d6bf7f3abaa
MD5 14a01f5fc82b78cfaa4529f4d88a952f
BLAKE2b-256 743fd2d7b5338637007f716b8f96173a74a45dbf9b7945da0584f4df3bf7aec6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page