Skip to main content

Simple python package to sanitize in a standard way ML-related labels.

Project description

Travis CI build SonarCloud Quality SonarCloud Maintainability Codacy Maintainability Maintainability Pypi project Pypi total project downloads

Simple python package to sanitize in a standard way ML-related labels.

How do I install this package?

As usual, just download it using pip:

pip install sanitize_ml_labels

Tests Coverage

Since some software handling coverages sometime get slightly different results, here’s three of them:

Coveralls Coverage SonarCloud Coverage Code Climate Coverate

Why do I need this?

So you have some kind of plot and you have some ML-related labels. Since I always rename and sanitize them the same way, I have prepared this package to always sanitize them in a standard fashion.

Usage examples

Here you have a couple of common examples: you have a set of metrics to normalize or a set of model names to normalize.

from sanitize_ml_labels import sanitize_ml_labels

# Example for metrics
labels = [
    "acc",
    "loss",
    "auroc",
    "lr"
]

sanitize_ml_labels(labels)

# ["Accuracy", "Loss", "AUROC", "Learning rate"]

# Example for models
labels = [
    "vanilla mlp",
    "vanilla cnn",
    "vanilla ffnn",
    "vanilla perceptron"
]

sanitize_ml_labels(labels)

# ["MLP", "CNN", "FFNN", "Perceptron"]

Extra utilities

Since I always use metric sanitization alongside axis normalization, it is usefull to know which axis should be maxed between zero and one to avoid any visualization bias to the metrics.

For this reason I have created the method is_normalized_metric, which after having normalized the given metric validates it against known normalized metrics (metrics between 0 and 1, is there another name? I coldn’t figure out a better one).

from sanitize_ml_labels import is_normalized_metric

is_normalized_metric("MSE") # False
is_normalized_metric("acc") # True
is_normalized_metric("accuracy") # True
is_normalized_metric("AUROC") # True
is_normalized_metric("auprc") # True

New features and issues

As always, for new features and issues you can either open a new issue and pull request. A pull request will always be the quicker way, but I’ll look into the issues when I get the time.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sanitize_ml_labels-1.0.3.tar.gz (5.3 kB view details)

Uploaded Source

File details

Details for the file sanitize_ml_labels-1.0.3.tar.gz.

File metadata

  • Download URL: sanitize_ml_labels-1.0.3.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for sanitize_ml_labels-1.0.3.tar.gz
Algorithm Hash digest
SHA256 ae6b434b0eb6abc75a958d568b6e6936895bee985e286c8bdd62ac741729ad30
MD5 fc3dc70e022768ad1f773e306ab70b0a
BLAKE2b-256 25156c5fbc63d2bd42df6036b7c44d43226d53b81ba808332c32d8fac984f92b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page