Skip to main content

Library for multispectral remote imaging.

Project description

Build Status Codacy Badge Maintainability Test Coverage Documentation Status DOI

Satsense is an open source Python library for patch based land-use and land-cover classification, initially developed for a project on deprived neighborhood detection. However, many of the algorithms made available through Satsense can be applied in other domains, such as ecology and climate science.

Satsense is based on readily available open source libraries, such as opencv for machine learning and the rasterio/gdal and netcdf libraries for data access. It has a modular design that makes it easy to add your own hand-crafted feature or use deep learning instead.

Detection of deprived neighborhoods is a land-use classification problem that is traditionally solved using hand crafted features like HoG, Lacunarity, NDXI, Pantex, Texton, and SIFT, computed from very high resolution satellite images. One of the goals of Satsense is to facilitate assessing the performance of these features on practical applications. To achieve this Satsense provides an easy to use open source reference implementation for these and other features, as well as facilities to distribute feature computation over multiple cpu’s. In the future the library will also provide easy access to metrics for assessing algorithm performance.

  • satsense - library for analysing satellite images, performance evaluation, etc.

  • notebooks - IPython notebooks for illustrating and testing the usage of Satsense

We are using python 3.6/3.7 and jupyter notebook for our code.

Documentation

Can be found on readthedocs.

Installation

Please see the installation guide on readthedocs.

Contributing

Contributions are very welcome! Please see CONTRIBUTING.md for our contribution guidelines.

Citing Satsense

If you use Satsense for scientific research, please cite it. You can download citation files from research-software.nl.

References

The collection of algorithms made available trough this package is inspired by

J. Graesser, A. Cheriyadat, R. R. Vatsavai, V. Chandola, J. Long and E. Bright, “Image Based Characterization of Formal and Informal Neighborhoods in an Urban Landscape”, in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 4, pp. 1164-1176, Aug. 2012. doi: 10.1109/JSTARS.2012.2190383

Jordan Graesser himself also maintains a library with many of these algorithms.

Test Data

The test data has been extracted from the Copernicus Sentinel data 2018.

Project details


Release history Release notifications | RSS feed

This version

0.9

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

satsense-0.9.tar.gz (3.5 MB view details)

Uploaded Source

Built Distribution

satsense-0.9-py3-none-any.whl (2.3 MB view details)

Uploaded Python 3

File details

Details for the file satsense-0.9.tar.gz.

File metadata

  • Download URL: satsense-0.9.tar.gz
  • Upload date:
  • Size: 3.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for satsense-0.9.tar.gz
Algorithm Hash digest
SHA256 8224c09ce5cf7c5ea46a1812a8f21b9e1759f707d2739ffd7bab6e1a33e6d023
MD5 9d2b7d66ff338c9609e493867e29dcef
BLAKE2b-256 a27f4bd3c03e98ab34353eeaa467102e80f34b4afdc5b6eae63208768f8414d2

See more details on using hashes here.

File details

Details for the file satsense-0.9-py3-none-any.whl.

File metadata

  • Download URL: satsense-0.9-py3-none-any.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for satsense-0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 3d44c5071e174e08673e5494e3f59c8f8af740f36a1152602384d76f5349dc3b
MD5 16016f4aba51c1ee8198782f1f65d2f4
BLAKE2b-256 18070a167510cdbed99704ef3584830c8f00bea81353e57890c1d1a15baa0219

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page