Skip to main content

scBoolSeq: Linking scRNA-Seq Statistics and Boolean Dynamics.

Project description

scBoolSeq

scRNA-Seq data binarisation and synthetic generation from Boolean dynamics.

Installation

We recommend installing scBoolSeq via conda, but we provide as well a standard pip installation.

Conda

conda install -c conda-forge -c colomoto scboolseq

Pip

pip install scboolseq

Docker

The scBoolSeq command can be invoked using the bnediction/scboolseq image:

docker run --rm -it -v $PWD:/data -w /data bnediction/scboolseq scBoolSeq ...

Usage

Python API

Here a minimal example is presented, using the same dataset as the CLI usage guide. For further information, please check the documentation.

import pandas as pd
from scboolseq import scBoolSeq

# read in the normalized expression data
nestorowa = pd.read_csv("data_Nestorowa.tsv.gz", index_col=0, sep="\t")
nestorowa.iloc[1:5, 1:5] 
#                HSPC_031  HSPC_037  LT-HSC_001  HSPC_001
# Kdm3a          6.877725  0.000000    0.000000  0.000000
# Coro2b         0.000000  6.913384    8.178374  9.475577
# 8430408G22Rik  0.000000  0.000000    0.000000  0.000000
# Clec9a         0.000000  0.000000    0.000000  0.000000
#
# NOTE : here, genes are rows and observations are columns

scbool_nest = scBoolSeq()

##
## Binarization
##

# scBoolSeq expects genes to be columns, thus we transpose the DataFrame.
scbool_nest.fit(nestorowa.T) # compute binarization criteria

binarized = scbool_nestorowa.binarize(nestorowa.T)
binarized.iloc[1:5, 1:5] 
#             Kdm3a  Coro2b  8430408G22Rik  Phf6
# HSPC_031      1.0     NaN            NaN   0.0
# HSPC_037      0.0     1.0            NaN   0.0
# LT-HSC_001    0.0     1.0            NaN   1.0
# HSPC_001      0.0     1.0            NaN   1.0


##
## Synthetic RNA-Seq generation from Boolean states
##

# We load in a boolean trace obtained from the simulation of a Boolean model
boolean_trace = pd.read_csv("boolean_dynamics.csv", index_col=0)
boolean_trace
#             Kdm3a  Coro2b  8430408G22Rik  Phf6
# init          1.0     0.0            1.0   0.0
# transient_1   0.0     1.0            1.0   0.0
# transient_2   0.0     1.0            0.0   1.0
# stable_state  0.0     1.0            1.0   1.0

synthetic_scrna_pseudocounts = scbool_nestorowa.sample_counts(boolean_trace) 

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scBoolSeq-2.0.tar.gz (23.3 kB view details)

Uploaded Source

Built Distribution

scBoolSeq-2.0-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file scBoolSeq-2.0.tar.gz.

File metadata

  • Download URL: scBoolSeq-2.0.tar.gz
  • Upload date:
  • Size: 23.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for scBoolSeq-2.0.tar.gz
Algorithm Hash digest
SHA256 fb937dd44446e513d40e9ca581c2f977af805e817894245b517568684d3a3460
MD5 13eb038bb87ab3dda1cf8800b335d88f
BLAKE2b-256 72df449c19f2d24a16b2f7eb4650d00284f45567e120336fce87eed49f895a9c

See more details on using hashes here.

File details

Details for the file scBoolSeq-2.0-py3-none-any.whl.

File metadata

  • Download URL: scBoolSeq-2.0-py3-none-any.whl
  • Upload date:
  • Size: 25.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for scBoolSeq-2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c8d7fdf50f98e5dec611f6d64569ce0fc8fdc7d38860cab850016e9eac7f2fd0
MD5 1a2b7f1e8c4f3ba612e58113c60c77f7
BLAKE2b-256 efdb4ff024032016df7347df71267dfccce5ace4ba51a65af2ba1da25a76ebb6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page