Skip to main content

scBoolSeq: Linking scRNA-Seq Statistics and Boolean Dynamics.

Project description

scBoolSeq

scRNA-Seq data binarisation and synthetic generation from Boolean dynamics.

Installation

Pip

pip install scboolseq

Conda

conda install -c conda-forge -c colomoto scboolseq

Docker

scBoolSeq is included in the ColoMoTo Docker distribution.

Usage

Python API

Here a minimal example is presented, using the same dataset as the CLI usage guide. For further information, please check the documentation.

import pandas as pd
from scboolseq import scBoolSeq

# read in the normalized expression data
nestorowa = pd.read_csv("data_Nestorowa.tsv.gz", index_col=0, sep="\t")
nestorowa.iloc[1:5, 1:5] 
#                HSPC_031  HSPC_037  LT-HSC_001  HSPC_001
# Kdm3a          6.877725  0.000000    0.000000  0.000000
# Coro2b         0.000000  6.913384    8.178374  9.475577
# 8430408G22Rik  0.000000  0.000000    0.000000  0.000000
# Clec9a         0.000000  0.000000    0.000000  0.000000
#
# NOTE : here, genes are rows and observations are columns

scbool_nest = scBoolSeq()

##
## Binarization
##

# scBoolSeq expects genes to be columns, thus we transpose the DataFrame.
scbool_nest.fit(nestorowa.T) # compute binarization criteria

binarized = scbool_nestorowa.binarize(nestorowa.T)
binarized.iloc[1:5, 1:5] 
#             Kdm3a  Coro2b  8430408G22Rik  Phf6
# HSPC_031      1.0     NaN            NaN   0.0
# HSPC_037      0.0     1.0            NaN   0.0
# LT-HSC_001    0.0     1.0            NaN   1.0
# HSPC_001      0.0     1.0            NaN   1.0


##
## Synthetic RNA-Seq generation from Boolean states
##

# We load in a boolean trace obtained from the simulation of a Boolean model
boolean_trace = pd.read_csv("boolean_dynamics.csv", index_col=0)
boolean_trace
#             Kdm3a  Coro2b  8430408G22Rik  Phf6
# init          1.0     0.0            1.0   0.0
# transient_1   0.0     1.0            1.0   0.0
# transient_2   0.0     1.0            0.0   1.0
# stable_state  0.0     1.0            1.0   1.0

synthetic_scrna_pseudocounts = scbool_nestorowa.sample_counts(boolean_trace) 

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scBoolSeq-2.0.1.tar.gz (23.3 kB view details)

Uploaded Source

Built Distribution

scBoolSeq-2.0.1-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file scBoolSeq-2.0.1.tar.gz.

File metadata

  • Download URL: scBoolSeq-2.0.1.tar.gz
  • Upload date:
  • Size: 23.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for scBoolSeq-2.0.1.tar.gz
Algorithm Hash digest
SHA256 a53aa243ad1c766d57487780a8512ac75d8b07c14974d7ba590673c8175f2e84
MD5 fc28fce5f59ef264605421264a7dec93
BLAKE2b-256 fdc87a86a7fca5a2081a44a20709b4695eb93017911834efb365fe997468a4e9

See more details on using hashes here.

File details

Details for the file scBoolSeq-2.0.1-py3-none-any.whl.

File metadata

  • Download URL: scBoolSeq-2.0.1-py3-none-any.whl
  • Upload date:
  • Size: 25.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for scBoolSeq-2.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b9d299d15ac38570e31b87bc6b1418be16133b9acb226223123847502b0de2b8
MD5 522118b594a95e8d74d4633265b96092
BLAKE2b-256 1163e3d4344ec2b5cfe0c30423ea6c5254d0ab1affb2df40387c003cefb1ddf4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page