Single-Cell Analysis in Python.
Project description
|Docs| |PyPI| |Build Status| |Coverage|
.. |Docs| image:: https://readthedocs.org/projects/scanpy/badge/?version=latest
:target: https://scanpy.readthedocs.io
.. |PyPI| image:: https://badge.fury.io/py/scanpy.svg
:target: https://pypi-hypernode.com/pypi/scanpy
.. |Build Status| image:: https://travis-ci.org/theislab/scanpy.svg?branch=master
:target: https://travis-ci.org/theislab/scanpy
.. |Coverage| image:: https://codecov.io/gh/theislab/scanpy/branch/master/graph/badge.svg
:target: https://codecov.io/gh/theislab/scanpy
Scanpy – Single-Cell Analysis in Python
=======================================
.. raw:: html
<p>
<img src="http://falexwolf.de/img/tsne_1.3M.png" style="width: 100px; margin: 10px 10px 5px 5px" align="left">
Scanpy is a scalable toolkit for analyzing single-cell gene expression
data. It includes preprocessing, visualization, clustering, pseudotime and
trajectory inference, differential expression testing and simulation of gene
regulatory networks. The Python-based implementation efficiently deals with
datasets of more than one million cells.
</p>
Read the `documentation <https://scanpy.readthedocs.io>`_.
If Scanpy is useful for your research, consider citing `Genome Biology (2018) <https://doi.org/10.1186/s13059-017-1382-0>`_.
.. |Docs| image:: https://readthedocs.org/projects/scanpy/badge/?version=latest
:target: https://scanpy.readthedocs.io
.. |PyPI| image:: https://badge.fury.io/py/scanpy.svg
:target: https://pypi-hypernode.com/pypi/scanpy
.. |Build Status| image:: https://travis-ci.org/theislab/scanpy.svg?branch=master
:target: https://travis-ci.org/theislab/scanpy
.. |Coverage| image:: https://codecov.io/gh/theislab/scanpy/branch/master/graph/badge.svg
:target: https://codecov.io/gh/theislab/scanpy
Scanpy – Single-Cell Analysis in Python
=======================================
.. raw:: html
<p>
<img src="http://falexwolf.de/img/tsne_1.3M.png" style="width: 100px; margin: 10px 10px 5px 5px" align="left">
Scanpy is a scalable toolkit for analyzing single-cell gene expression
data. It includes preprocessing, visualization, clustering, pseudotime and
trajectory inference, differential expression testing and simulation of gene
regulatory networks. The Python-based implementation efficiently deals with
datasets of more than one million cells.
</p>
Read the `documentation <https://scanpy.readthedocs.io>`_.
If Scanpy is useful for your research, consider citing `Genome Biology (2018) <https://doi.org/10.1186/s13059-017-1382-0>`_.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scanpy-0.4.4.tar.gz
(229.0 kB
view details)
Built Distributions
File details
Details for the file scanpy-0.4.4.tar.gz
.
File metadata
- Download URL: scanpy-0.4.4.tar.gz
- Upload date:
- Size: 229.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0684acbbb45b5c14833e19ec4ff0b37cf538b6448dfda231c111f80302ee9816 |
|
MD5 | 791d5c122e188cbe8e975dc29cb4857c |
|
BLAKE2b-256 | 740b3241cc6784781dd50a5a418e69214003255d351b2625d1a04e83b38e61cc |
File details
Details for the file scanpy-0.4.4-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: scanpy-0.4.4-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 259.3 kB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80d6d4ea74af5f716a9e9c8dc9b65e6f73c9d5fe2fcd6ee1b5d17e7f308a8059 |
|
MD5 | 714538a070f7f63da7face2886296b1f |
|
BLAKE2b-256 | 6d5179e69884e5d41fa9f32b51c4d589b1a92748637cbc344d75a105557fe73d |
File details
Details for the file scanpy-0.4.4-cp36-cp36m-manylinux1_x86_64.whl
.
File metadata
- Download URL: scanpy-0.4.4-cp36-cp36m-manylinux1_x86_64.whl
- Upload date:
- Size: 330.5 kB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c89b8c05c321f6e75997c6ff8172159fe773cc10bdf1fcb9c8c09596eb1aecf9 |
|
MD5 | c740f19b5e96900b5b614437912100a4 |
|
BLAKE2b-256 | f9e6cfabb71e9cee4b9cd426c461723814c4857cdc1ac5a93c0a18e3cd0b399c |
File details
Details for the file scanpy-0.4.4-cp36-cp36m-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: scanpy-0.4.4-cp36-cp36m-macosx_10_12_x86_64.whl
- Upload date:
- Size: 394.2 kB
- Tags: CPython 3.6m, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3aa9a8cde6d2829a201f5f365b73991478324646086b89ed2b20343b542d5f01 |
|
MD5 | a0e62befb9838992e30a571edd563728 |
|
BLAKE2b-256 | 9918cc15930e38e2f52a51ee63814b3f40f9304d7a6d0d26e41a717211c5c4c9 |
File details
Details for the file scanpy-0.4.4-cp35-cp35m-macosx_10_6_x86_64.whl
.
File metadata
- Download URL: scanpy-0.4.4-cp35-cp35m-macosx_10_6_x86_64.whl
- Upload date:
- Size: 402.3 kB
- Tags: CPython 3.5m, macOS 10.6+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6778c61ba8f21df3205168ad0d30c45dd3b39f1d23edbf00a9cf0ebb304454f0 |
|
MD5 | 6eb80d80dae3c671ba3d00ff2b22cbaa |
|
BLAKE2b-256 | 96fb1c085fa4fcd1cf6ab5177c408a761d51b6f8fb91450b88113c2161a62878 |