Single-Cell Analysis in Python.
Project description
|Docs| |PyPI| |Build Status|
.. |Docs| image:: https://readthedocs.org/projects/scanpy/badge/?version=latest
:target: https://scanpy.readthedocs.io
.. |PyPI| image:: https://badge.fury.io/py/scanpy.svg
:target: https://pypi-hypernode.com/pypi/scanpy
.. |Build Status| image:: https://travis-ci.org/theislab/scanpy.svg?branch=master
:target: https://travis-ci.org/theislab/scanpy
..
.. |Coverage| image:: https://codecov.io/gh/theislab/scanpy/branch/master/graph/badge.svg
:target: https://codecov.io/gh/theislab/scanpy
Scanpy – Single-Cell Analysis in Python
=======================================
.. raw:: html
<p>
<img src="http://falexwolf.de/img/tsne_1.3M.png" style="width: 100px; margin: 10px 10px 5px 5px" align="left">
Scanpy is a scalable toolkit for analyzing single-cell gene expression
data. It includes preprocessing, visualization, clustering, pseudotime and
trajectory inference, differential expression testing and simulation of gene
regulatory networks. The Python-based implementation efficiently deals with
datasets of more than one million cells.
</p>
Read the `documentation <https://scanpy.readthedocs.io>`_.
If Scanpy is useful for your research, consider citing `Genome Biology (2018) <https://doi.org/10.1186/s13059-017-1382-0>`_.
.. |Docs| image:: https://readthedocs.org/projects/scanpy/badge/?version=latest
:target: https://scanpy.readthedocs.io
.. |PyPI| image:: https://badge.fury.io/py/scanpy.svg
:target: https://pypi-hypernode.com/pypi/scanpy
.. |Build Status| image:: https://travis-ci.org/theislab/scanpy.svg?branch=master
:target: https://travis-ci.org/theislab/scanpy
..
.. |Coverage| image:: https://codecov.io/gh/theislab/scanpy/branch/master/graph/badge.svg
:target: https://codecov.io/gh/theislab/scanpy
Scanpy – Single-Cell Analysis in Python
=======================================
.. raw:: html
<p>
<img src="http://falexwolf.de/img/tsne_1.3M.png" style="width: 100px; margin: 10px 10px 5px 5px" align="left">
Scanpy is a scalable toolkit for analyzing single-cell gene expression
data. It includes preprocessing, visualization, clustering, pseudotime and
trajectory inference, differential expression testing and simulation of gene
regulatory networks. The Python-based implementation efficiently deals with
datasets of more than one million cells.
</p>
Read the `documentation <https://scanpy.readthedocs.io>`_.
If Scanpy is useful for your research, consider citing `Genome Biology (2018) <https://doi.org/10.1186/s13059-017-1382-0>`_.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scanpy-1.0.1.tar.gz
(214.1 kB
view details)
Built Distribution
scanpy-1.0.1-py3-none-any.whl
(223.7 kB
view details)
File details
Details for the file scanpy-1.0.1.tar.gz
.
File metadata
- Download URL: scanpy-1.0.1.tar.gz
- Upload date:
- Size: 214.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 137eb35a27ff95eed651dea2cc4a4d3a84bed9eb5d224fa343d9178e42606708 |
|
MD5 | ea6d585cdd5001720d1b563c40754772 |
|
BLAKE2b-256 | 19b78798ccb3425f8833e9cf1ba8341e8f04adbbbc3c166a01e89125584096cf |
File details
Details for the file scanpy-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: scanpy-1.0.1-py3-none-any.whl
- Upload date:
- Size: 223.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34eac67035c33f3f392f615fe53622261a613b44d657364973a51a2c947fc94f |
|
MD5 | e1582c2698854a2ca7eaa9d4c7d92df2 |
|
BLAKE2b-256 | 40f0253f10d27644f55a375033f6d84224968ca795933deb07412ed834325193 |