Single-Cell Analysis in Python.
Project description
|PyPI| |Docs| |Build Status|
.. |PyPI| image:: https://img.shields.io/pypi/v/scanpy.svg
:target: https://pypi-hypernode.com/project/scanpy
.. |Docs| image:: https://readthedocs.org/projects/scanpy/badge/?version=latest
:target: https://scanpy.readthedocs.io
.. |Build Status| image:: https://travis-ci.org/theislab/scanpy.svg?branch=master
:target: https://travis-ci.org/theislab/scanpy
..
.. |Coverage| image:: https://codecov.io/gh/theislab/scanpy/branch/master/graph/badge.svg
:target: https://codecov.io/gh/theislab/scanpy
Scanpy – Single-Cell Analysis in Python
=======================================
.. raw:: html
<p>
<img src="http://falexwolf.de/img/tsne_1.3M.png" style="width: 100px; margin: 10px 10px 5px 5px" align="left">
Scanpy is a scalable toolkit for analyzing single-cell gene expression
data. It includes preprocessing, visualization, clustering, pseudotime and
trajectory inference, differential expression testing and simulation of gene
regulatory networks. The Python-based implementation efficiently deals with
datasets of more than one million cells.
</p>
Read the `documentation <https://scanpy.readthedocs.io>`_.
If Scanpy is useful for your research, consider citing `Genome Biology (2018) <https://doi.org/10.1186/s13059-017-1382-0>`_.
.. |PyPI| image:: https://img.shields.io/pypi/v/scanpy.svg
:target: https://pypi-hypernode.com/project/scanpy
.. |Docs| image:: https://readthedocs.org/projects/scanpy/badge/?version=latest
:target: https://scanpy.readthedocs.io
.. |Build Status| image:: https://travis-ci.org/theislab/scanpy.svg?branch=master
:target: https://travis-ci.org/theislab/scanpy
..
.. |Coverage| image:: https://codecov.io/gh/theislab/scanpy/branch/master/graph/badge.svg
:target: https://codecov.io/gh/theislab/scanpy
Scanpy – Single-Cell Analysis in Python
=======================================
.. raw:: html
<p>
<img src="http://falexwolf.de/img/tsne_1.3M.png" style="width: 100px; margin: 10px 10px 5px 5px" align="left">
Scanpy is a scalable toolkit for analyzing single-cell gene expression
data. It includes preprocessing, visualization, clustering, pseudotime and
trajectory inference, differential expression testing and simulation of gene
regulatory networks. The Python-based implementation efficiently deals with
datasets of more than one million cells.
</p>
Read the `documentation <https://scanpy.readthedocs.io>`_.
If Scanpy is useful for your research, consider citing `Genome Biology (2018) <https://doi.org/10.1186/s13059-017-1382-0>`_.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scanpy-1.0.3.tar.gz
(189.9 kB
view details)
Built Distribution
scanpy-1.0.3-py3-none-any.whl
(250.2 kB
view details)
File details
Details for the file scanpy-1.0.3.tar.gz
.
File metadata
- Download URL: scanpy-1.0.3.tar.gz
- Upload date:
- Size: 189.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1cfb3f05a7fe176a25f8e38f93b1b890ae5b8b8cb0b74101a98edd77da976e50 |
|
MD5 | 205957a76fbcba333a3a37a25a81972a |
|
BLAKE2b-256 | d4801af42ffdc7739a8c6cebaee063944f3d344c0e9f37d98fc028e38c0f474c |
File details
Details for the file scanpy-1.0.3-py3-none-any.whl
.
File metadata
- Download URL: scanpy-1.0.3-py3-none-any.whl
- Upload date:
- Size: 250.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8f5625c1dc91ae5d1bc4fef4c2b76c6792ca60c7ef96de2c9a3d2df31548fdd |
|
MD5 | e1538dfff5e67ae0026308095439a27a |
|
BLAKE2b-256 | 4d2995cc58edbda229b18941b87ae45666f6b144eeb5a4a65918b13a21b22b35 |