Skip to main content

Schema Annotations for Linked Avro Data (SALAD)

Project description

Linux Build Status Code coverage CII Best Practices

Schema Salad

Salad is a schema language for describing JSON or YAML structured linked data documents. Salad schema describes rules for preprocessing, structural validation, and hyperlink checking for documents described by a Salad schema. Salad supports rich data modeling with inheritance, template specialization, object identifiers, object references, documentation generation, code generation, and transformation to RDF. Salad provides a bridge between document and record oriented data modeling and the Semantic Web.

The Schema Salad library is Python 3.6+ only.

Usage

$ pip install schema_salad

To install from source:

git clone https://github.com/common-workflow-language/schema_salad
cd schema_salad
python3 setup.py install

Commands

Schema salad can be used as a command line tool or imported as a Python module:

$ schema-salad-tool
usage: schema-salad-tool [-h] [--rdf-serializer RDF_SERIALIZER]
                      [--print-jsonld-context | --print-rdfs | --print-avro
                      | --print-rdf | --print-pre | --print-index
                      | --print-metadata | --print-inheritance-dot
                      | --print-fieldrefs-dot | --codegen language
                      | --print-oneline]
                      [--strict | --non-strict] [--verbose | --quiet
                      | --debug]
                      [--version]
                      [schema] [document]

$ python
>>> import schema_salad

Validate a schema:

$ schema-salad-tool myschema.yml

Validate a document using a schema:

$ schema-salad-tool myschema.yml mydocument.yml

Generate HTML documentation:

$ schema-salad-tool myschema.yml > myschema.html

Get JSON-LD context:

$ schema-salad-tool --print-jsonld-context myschema.yml mydocument.yml

Convert a document to JSON-LD:

$ schema-salad-tool --print-pre myschema.yml mydocument.yml > mydocument.jsonld

Generate Python classes for loading/generating documents described by the schema:

$ schema-salad-tool --codegen=python myschema.yml > myschema.py

Display inheritance relationship between classes as a graphviz ‘dot’ file and render as SVG:

$ schema-salad-tool --print-inheritance-dot myschema.yml | dot -Tsvg > myschema.svg

Quick Start

Let’s say you have a ‘basket’ record that can contain items measured either by weight or by count. Here’s an example:

basket:
  - product: bananas
    price: 0.39
    per: pound
    weight: 1
  - product: cucumbers
    price: 0.79
    per: item
    count: 3

We want to validate that all the expected fields are present, the measurement is known, and that “count” cannot be a fractional value. Here is an example schema to do that:

- name: Product
  doc: |
    The base type for a product.  This is an abstract type, so it
    can't be used directly, but can be used to define other types.
  type: record
  abstract: true
  fields:
    product: string
    price: float

- name: ByWeight
  doc: |
    A product, sold by weight.  Products may be sold by pound or by
    kilogram.  Weights may be fractional.
  type: record
  extends: Product
  fields:
    per:
      type:
        type: enum
        symbols:
          - pound
          - kilogram
      jsonldPredicate: '#per'
    weight: float

- name: ByCount
  doc: |
    A product, sold by count.  The count must be a integer value.
  type: record
  extends: Product
  fields:
    per:
      type:
        type: enum
        symbols:
          - item
      jsonldPredicate: '#per'
    count: int

- name: Basket
  doc: |
    A basket of products.  The 'documentRoot' field indicates it is a
    valid starting point for a document.  The 'basket' field will
    validate subtypes of 'Product' (ByWeight and ByCount).
  type: record
  documentRoot: true
  fields:
    basket:
      type:
        type: array
        items: Product

You can check the schema and document in schema_salad/tests/basket_schema.yml and schema_salad/tests/basket.yml:

$ schema-salad-tool basket_schema.yml basket.yml
Document `basket.yml` is valid

Documentation

See the specification and the metaschema (salad schema for itself). For an example application of Schema Salad see the Common Workflow Language.

Rationale

The JSON data model is an popular way to represent structured data. It is attractive because of it’s relative simplicity and is a natural fit with the standard types of many programming languages. However, this simplicity comes at the cost that basic JSON lacks expressive features useful for working with complex data structures and document formats, such as schemas, object references, and namespaces.

JSON-LD is a W3C standard providing a way to describe how to interpret a JSON document as Linked Data by means of a “context”. JSON-LD provides a powerful solution for representing object references and namespaces in JSON based on standard web URIs, but is not itself a schema language. Without a schema providing a well defined structure, it is difficult to process an arbitrary JSON-LD document as idiomatic JSON because there are many ways to express the same data that are logically equivalent but structurally distinct.

Several schema languages exist for describing and validating JSON data, such as JSON Schema and Apache Avro data serialization system, however none understand linked data. As a result, to fully take advantage of JSON-LD to build the next generation of linked data applications, one must maintain separate JSON schema, JSON-LD context, RDF schema, and human documentation, despite significant overlap of content and obvious need for these documents to stay synchronized.

Schema Salad is designed to address this gap. It provides a schema language and processing rules for describing structured JSON content permitting URI resolution and strict document validation. The schema language supports linked data through annotations that describe the linked data interpretation of the content, enables generation of JSON-LD context and RDF schema, and production of RDF triples by applying the JSON-LD context. The schema language also provides for robust support of inline documentation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

schema-salad-8.0.20210624154013.tar.gz (433.9 kB view details)

Uploaded Source

Built Distributions

schema_salad-8.0.20210624154013-py3-none-any.whl (473.4 kB view details)

Uploaded Python 3

schema_salad-8.0.20210624154013-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

schema_salad-8.0.20210624154013-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

schema_salad-8.0.20210624154013-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

schema_salad-8.0.20210624154013-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

schema_salad-8.0.20210624154013-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

schema_salad-8.0.20210624154013-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

schema_salad-8.0.20210624154013-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

schema_salad-8.0.20210624154013-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

File details

Details for the file schema-salad-8.0.20210624154013.tar.gz.

File metadata

  • Download URL: schema-salad-8.0.20210624154013.tar.gz
  • Upload date:
  • Size: 433.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.2

File hashes

Hashes for schema-salad-8.0.20210624154013.tar.gz
Algorithm Hash digest
SHA256 a4f3044ad979dd850418fbd826257bcd6201a6a8c1f93e20402218d6adaf3814
MD5 3f9cba34861538600cada5d4d9aaa1ae
BLAKE2b-256 acdf3b86cea68a7a102a1ebe03b82de71275033148f8e2370cc3985e23442efa

See more details on using hashes here.

File details

Details for the file schema_salad-8.0.20210624154013-py3-none-any.whl.

File metadata

  • Download URL: schema_salad-8.0.20210624154013-py3-none-any.whl
  • Upload date:
  • Size: 473.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.2

File hashes

Hashes for schema_salad-8.0.20210624154013-py3-none-any.whl
Algorithm Hash digest
SHA256 ff699d0f0539f096096cc60a700a060ab333dde05fe0dfa49b3594e4417f5f01
MD5 a19ae6c01281ce3564cd455b4afdbcc6
BLAKE2b-256 efc55b9ec3d1069eb61f5b66d770164f26d1501dd9088a139b4fcf9517060867

See more details on using hashes here.

File details

Details for the file schema_salad-8.0.20210624154013-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for schema_salad-8.0.20210624154013-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 713b08f15ceb0a90e42fa73c4819fa3b6b2b180d9c7b23bc427b78fd0b617ca0
MD5 e778c0bd3bd22dcc8fb273448b864086
BLAKE2b-256 7a6198e6c8082bc8e0577e75f0b605174badff8c155635adfd60940a88394d66

See more details on using hashes here.

File details

Details for the file schema_salad-8.0.20210624154013-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for schema_salad-8.0.20210624154013-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d15a6c1955a31e2bdcf9011ceb478eee4ac59acbdaf017eddbfbd4f2e21b4fa1
MD5 e14fb4afa74e2fff7f3f8440fd340558
BLAKE2b-256 18a3521155472da4f8373b09f8aee5255ebef5cb6befad416e7b8c60218d2f3d

See more details on using hashes here.

File details

Details for the file schema_salad-8.0.20210624154013-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for schema_salad-8.0.20210624154013-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80ea78505d4f4720a1aa3c119f7faa974cb9ec28ad9f940a5b69df8a94914f04
MD5 9b2dc4ef224d6112c55598e299a9d0ad
BLAKE2b-256 fcacae4b7ba85191ddb7ffb06a2f0595d0744d423f55608587324b38d85aa13c

See more details on using hashes here.

File details

Details for the file schema_salad-8.0.20210624154013-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for schema_salad-8.0.20210624154013-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8561104a08516df5c986a27964c147dea4efa89948e692559bf5cd8f9c4c5bb7
MD5 d66bbf2678ad3ac3bbd8c35ca79e3d64
BLAKE2b-256 7efcf7e29727b2a552843ea456ab2174a9862efb0cd4a6823fd6e3558bfd83c7

See more details on using hashes here.

File details

Details for the file schema_salad-8.0.20210624154013-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for schema_salad-8.0.20210624154013-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f8fbd65d8c636e927119517a09978485a5a8eb2279892a27a63447891f1fcf1
MD5 31cfb4303b8d138ddaeac7db33053a27
BLAKE2b-256 eb78500ae8ee6346a890afe029b152a957c1147c02837e06ed24fda322d9bd87

See more details on using hashes here.

File details

Details for the file schema_salad-8.0.20210624154013-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for schema_salad-8.0.20210624154013-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 079cb689f2535811ed74516e950d886048a48f44083d9a0a4006382afb384d55
MD5 e8979d3940884c004b0dec028c322cf9
BLAKE2b-256 b30c5837bb110c99a30ba15bdf946e6345c1c2969f376b16bb8dc9ef560cdf92

See more details on using hashes here.

File details

Details for the file schema_salad-8.0.20210624154013-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for schema_salad-8.0.20210624154013-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b107f51df0b7bed167b708985664f90baf44700ffac91e3bda8f80e1d6b9c63
MD5 e1327b594de4f438da61e7eccf64c3af
BLAKE2b-256 a94dff31532a56ab109935a60a24e2d651ead72cb3132ad8e594b150675dbed8

See more details on using hashes here.

File details

Details for the file schema_salad-8.0.20210624154013-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for schema_salad-8.0.20210624154013-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e842db6d9c856cf5d9ae68e9d782d2275ca5488fb06004aea95ce4593ebdf7b9
MD5 c83321438e62811e4d016e2d1dfb88a6
BLAKE2b-256 f1730f84c51c466839da714798d59a553cb92de5d571ceb33e28f29d8fa43204

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page