Skip to main content

Simple data validation library

Project description

New in version 0.2.0:

  • Allow intermix literals and other schemas in dictionary keys. I.e. Schema({'<id>': int, str: object}) will check <id> for being int, and will disregard other keys of type <str>. See this StackOverflow question for more.

schema is a library for validating Python data structures, such as those obtained from config-files, forms, external services or command-line parsing, converted from JSON/YAML (or something else) to Python data-types.

https://secure.travis-ci.org/halst/schema.png?branch=master https://coveralls.io/repos/halst/schema/badge.png?branch=master

Example

Here is a quick example to get a feeling of schema, validating a list of entries with personal information:

>>> from schema import Schema, And, Use, Optional

>>> schema = Schema([{'name': And(str, len),
...                   'age':  And(Use(int), lambda n: 18 <= n <= 99),
...                   Optional('sex'): And(str, Use(str.lower),
...                                        lambda s: s in ('male', 'female'))}])

>>> data = [{'name': 'Sue', 'age': '28', 'sex': 'FEMALE'},
...         {'name': 'Sam', 'age': '42'},
...         {'name': 'Sacha', 'age': '20', 'sex': 'Male'}]

>>> validated = schema.validate(data)

>>> assert validated == [{'name': 'Sue', 'age': 28, 'sex': 'female'},
...                      {'name': 'Sam', 'age': 42},
...                      {'name': 'Sacha', 'age' : 20, 'sex': 'male'}]

If data is valid, Schema.validate will return the validated data (optionally converted with Use calls, see below).

If data is invalid, Schema will raise SchemaError exception.

Installation

Use pip or easy_install:

pip install schema==0.2.0

Alternatively, you can just drop schema.py file into your project—it is self-contained.

  • schema is tested with Python 2.6, 2.7, 3.2, 3.3 and PyPy.

  • schema follows semantic versioning.

How Schema validates data

Types

If Schema(...) encounters a type (such as int, str, object, etc.), it will check if the corresponding piece of data is an instance of that type, otherwise it will raise SchemaError.

>>> from schema import Schema

>>> Schema(int).validate(123)
123

>>> Schema(int).validate('123')
Traceback (most recent call last):
...
SchemaError: '123' should be instance of <type 'int'>

>>> Schema(object).validate('hai')
'hai'

Callables

If Schema(...) encounters a callable (function, class, or object with __call__ method) it will call it, and if its return value evaluates to True it will continue validating, else—it will raise SchemaError.

>>> import os

>>> Schema(os.path.exists).validate('./')
'./'

>>> Schema(os.path.exists).validate('./non-existent/')
Traceback (most recent call last):
...
SchemaError: exists('./non-existent/') should evaluate to True

>>> Schema(lambda n: n > 0).validate(123)
123

>>> Schema(lambda n: n > 0).validate(-12)
Traceback (most recent call last):
...
SchemaError: <lambda>(-12) should evaluate to True

“Validatables”

If Schema(...) encounters an object with method validate it will run this method on corresponding data as data = obj.validate(data). This method may raise SchemaError exception, which will tell Schema that that piece of data is invalid, otherwise—it will continue validating.

As example, you can use Use for creating such objects. Use helps to use a function or type to convert a value while validating it:

>>> from schema import Use

>>> Schema(Use(int)).validate('123')
123

>>> Schema(Use(lambda f: open(f, 'a'))).validate('LICENSE-MIT')
<open file 'LICENSE-MIT', mode 'a' at 0x...>

Dropping the details, Use is basically:

class Use(object):

    def __init__(self, callable_):
        self._callable = callable_

    def validate(self, data):
        try:
            return self._callable(data)
        except Exception as e:
            raise SchemaError('%r raised %r' % (self._callable.__name__, e))

Now you can write your own validation-aware classes and data types.

Lists, similar containers

If Schema(...) encounters an instance of list, tuple, set or frozenset, it will validate contents of corresponding data container against schemas listed inside that container:

>>> Schema([1, 0]).validate([1, 1, 0, 1])
[1, 1, 0, 1]

>>> Schema((int, float)).validate((5, 7, 8, 'not int or float here'))
Traceback (most recent call last):
...
SchemaError: Or(<type 'int'>, <type 'float'>) did not validate 'not int or float here'
'not int or float here' should be instance of <type 'float'>

Dictionaries

If Schema(...) encounters an instance of dict, it will validate data key-value pairs:

>>> d = Schema({'name': str,
...             'age': lambda n: 18 < 99}).validate({'name': 'Sue', 'age': 28})

>>> assert d == {'name': 'Sue', 'age': 28}

You can specify keys as schemas too:

>>> schema = Schema({str: int,  # string keys should have integer values
...                  int: None})  # int keys should be always None

>>> data = schema.validate({'key1': 1, 'key2': 2,
...                         10: None, 20: None})

>>> schema.validate({'key1': 1,
...                   10: 'not None here'})
Traceback (most recent call last):
...
SchemaError: None does not match 'not None here'

This is useful if you want to check certain key-values, but don’t care about other:

>>> schema = Schema({'<id>': int,
...                  '<file>': Use(open),
...                  str: object})  # don't care about other str keys

>>> data = schema.validate({'<id>': 10,
...                         '<file>': 'README.rst',
...                         '--verbose': True})

You can mark a key as optional as follows:

>>> from schema import Optional
>>> Schema({'name': str,
...         Optional('occupation'): str}).validate({'name': 'Sam'})
{'name': 'Sam'}

schema has classes And and Or that help validating several schemas for the same data:

>>> from schema import And, Or

>>> Schema({'age': And(int, lambda n: 0 < n < 99)}).validate({'age': 7})
{'age': 7}

>>> Schema({'password': And(str, lambda s: len(s) > 6)}).validate({'password': 'hai'})
Traceback (most recent call last):
...
SchemaError: <lambda>('hai') should evaluate to True

>>> Schema(And(Or(int, float), lambda x: x > 0)).validate(3.1415)
3.1415

User-friendly error reporting

You can pass a keyword argument error to any of validatable classes (such as Schema, And, Or, Use) to report this error instead of a built-in one.

>>> Schema(Use(int, error='Invalid year')).validate('XVII')
Traceback (most recent call last):
...
SchemaError: Invalid year

You can see all errors that occured by accessing exception’s exc.autos for auto-generated error messages, and exc.errors for errors which had error text passed to them.

You can exit with sys.exit(exc.code) if you want to show the messages to the user without traceback. error messages are given precedence in that case.

A JSON API example

Here is a quick example: validation of create a gist request from github API.

>>> gist = '''{"description": "the description for this gist",
...            "public": true,
...            "files": {
...                "file1.txt": {"content": "String file contents"},
...                "other.txt": {"content": "Another file contents"}}}'''

>>> from schema import Schema, And, Use, Optional

>>> import json

>>> gist_schema = Schema(And(Use(json.loads),  # first convert from JSON
...                          # use basestring since json returns unicode
...                          {Optional('description'): basestring,
...                           'public': bool,
...                           'files': {basestring: {'content': basestring}}}))

>>> gist = gist_schema.validate(gist)

# gist:
{u'description': u'the description for this gist',
 u'files': {u'file1.txt': {u'content': u'String file contents'},
            u'other.txt': {u'content': u'Another file contents'}},
 u'public': True}

Using schema with docopt

Assume you are using docopt with the following usage-pattern:

Usage: my_program.py [–count=N] <path> <files>…

and you would like to validate that <files> are readable, and that <path> exists, and that --count is either integer from 0 to 5, or None.

Assuming docopt returns the following dict:

>>> args = {'<files>': ['LICENSE-MIT', 'setup.py'],
...         '<path>': '../',
...         '--count': '3'}

this is how you validate it using schema:

>>> from schema import Schema, And, Or, Use
>>> import os

>>> s = Schema({'<files>': [Use(open)],
...             '<path>': os.path.exists,
...             '--count': Or(None, And(Use(int), lambda n: 0 < n < 5))})

>>> args = s.validate(args)

>>> args['<files>']
[<open file 'LICENSE-MIT', mode 'r' at 0x...>, <open file 'setup.py', mode 'r' at 0x...>]

>>> args['<path>']
'../'

>>> args['--count']
3

As you can see, schema validated data successfully, opened files and converted '3' to int.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

schema-0.3.0.tar.gz (7.6 kB view details)

Uploaded Source

File details

Details for the file schema-0.3.0.tar.gz.

File metadata

  • Download URL: schema-0.3.0.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for schema-0.3.0.tar.gz
Algorithm Hash digest
SHA256 2e1ac5e56ac00282a8e286f35ca1b94647266a3a40b33a1e2e0bb6ee785d51c0
MD5 3ad751c878232b93896378ea001c5610
BLAKE2b-256 f5320ac81ef41e3dc5a59c7167721298d87f7f939e4e134e3e0538739f06ec5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page