Skip to main content

A production-speed performance and memory profiler for data batch processing applications.

Project description

Sciagraph: the performance and memory profiler for Python data processing

Whether it's detecting disease, modeling the electric grid, or whatever data processing you do with Python, inefficient code is a cost you can't afford to pay:

  • If it takes 30 minutes for your code to run, debugging minor changes can waste your whole afternoon.
  • If your program runs out of memory—it's dead, and you're not getting any results until you fix that.
  • Once you're running in production at scale, inefficient software means throwing money at your cloud provider. You probably need that money more than they do.

On the other hand, the faster your software, the easier it will be for you to iterate and improve. And the faster your software, the happier your users (and accountant) will be.

That's where profilers come in: tools that will help you find speed and memory bottlenecks in your code, so that instead of guessing, you can quickly fix the problem. Unfortunately, profilers that work well for web applications don't necessary work as well when it comes to data processing. You need a profiler designed for your kind of software.

Sciagraph is a profiler that gives you deep visibility into your Python code's speed and memory usage—with a focus on data science, scientific computing, and data processing. It's designed specifically for the needs of people like you, from measurements to visualizations to integrations (Jupyter, MLFlow, Celery, and more.)

Learn more at https://sciagraph.com.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

sciagraph-2023.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

sciagraph-2023.4.2-cp311-cp311-macosx_11_0_universal2.whl (25.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

sciagraph-2023.4.2-cp311-cp311-macosx_10_15_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

sciagraph-2023.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

sciagraph-2023.4.2-cp310-cp310-macosx_11_0_universal2.whl (25.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

sciagraph-2023.4.2-cp310-cp310-macosx_10_15_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

sciagraph-2023.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sciagraph-2023.4.2-cp39-cp39-macosx_11_0_universal2.whl (25.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

sciagraph-2023.4.2-cp39-cp39-macosx_10_15_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

sciagraph-2023.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sciagraph-2023.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file sciagraph-2023.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b4f2a8412638a6296db77e872c7cc01380eac3ddba5d996a515b8752bb55458
MD5 79982a8353dfe9ff52d9c000572e053b
BLAKE2b-256 e65a457c4def0d644ed6e79d91e3bf3b1bf3f52fadafee79e8810e78b8a23f3f

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 d1ee307ac17b9a91d5cf7de1668ac2c333dbb7d09755c3f40b644eec28d57dca
MD5 ffda28c0aaf0bb70f6b5a5773fd13322
BLAKE2b-256 9ba4fa5a44d8e0b894325abd30ac264e6bc3167128c452cb636f40754e9d0cd9

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 37eed182d5cc9ab49b077fb2d7abf35997297bd08492441df0f5c8e687f63227
MD5 61dc752a2bafaf5fc2655ed8b0da8db7
BLAKE2b-256 5438991bff251d009584b7bf558de67eb0f7fb7b012bf210890c879f55ae1df9

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8702e5381183877e8601fb87d5122acb0ef3d88f1da933dbc3df5e792183b820
MD5 6283c045df32502657390c770670ee27
BLAKE2b-256 4d36771be2b7cd0b372afea79296b78370842f988ee4eca16b7424762ea613d4

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 de60a233ac0bdd3e07e2b0392ea6775f674243c0530f6a63e1360ad3fc51132e
MD5 ac3817196cc1f436cf96dc13af0075a3
BLAKE2b-256 07a3a1c5124e166a663f0a8fbf4535c1ec96fa93b22b963ca2f5828bb631e0cb

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c6e35c92393ec58435024f191d46ec74806bbe0501638fb13e14a1e2acfd23e9
MD5 fcc4c8556a62a0f9a6e821dc042eda7a
BLAKE2b-256 91ff0e756a0a7896df55e4e21b3f813bf7ea08b399e2323ff6e8f7e8f75e2523

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c51890046c14b1de44a91dd4b9dd3fd7cf9f44fbfbb8f1a848fc2eaa78a04f7d
MD5 2ca637f433b635ae3554d671d8d6e5e5
BLAKE2b-256 062c488e4fb15f93868b9dbc77759baaafaf4ecf236c5871a1d666a517e0eb08

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 36d3fe48238036eee71681cbd33b38a92eda87561999b5191a5b2dcfc93fa5d7
MD5 d2a022021a51423759a47b6872a33f69
BLAKE2b-256 a88aeac7dc7031ad5e608e328efd5992160f1505f378b817d0c9edc6558c1a4d

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c26508d20ca1cae97046b7ce719fa4db054d6425789d4de8dfb760c771b77ce1
MD5 394823271749efb1abbe79d0d0d78d56
BLAKE2b-256 0c149510da04d7fa4685bda94f87e9eec061394ea69bb974ada27417c783aaf7

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81be03bf5e9735276240276ca3508a9df805fa461dd700f64bfa81dc0a34b28f
MD5 816c27899ebbe9100f5d5b172bb7d129
BLAKE2b-256 c0dae4396841c51c03edf6afc75ae0057cc4c1b04c2eb928028ba232bb91c855

See more details on using hashes here.

Provenance

File details

Details for the file sciagraph-2023.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sciagraph-2023.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3861aca23da3f16639cf8ab561440a731959a981c66eb00f0ce5f14674e73540
MD5 a389b3fe86cef754af0ea3c178c725be
BLAKE2b-256 ee8209c21210a388321c78d4d5b1d057de5ae8d8f1308f2c80a445a8f26b256f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page