Skip to main content

The propose of this library is to allow the data analysis process more easy and automatic.

Project description

===============================
SciKit Data
===============================


.. image:: https://img.shields.io/pypi/v/scikit-data.svg
:target: https://pypi-hypernode.com/pypi/scikit-data

.. image:: https://img.shields.io/travis/OpenDataScienceLab/skdata.svg
:target: https://travis-ci.org/OpenDataScienceLab/skdata

.. image:: https://readthedocs.org/projects/skdata/badge/?version=latest
:target: https://skdata.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status


Conda package current release info
====================

.. image:: https://anaconda.org/conda-forge/scikit-data/badges/version.svg
:target: https://anaconda.org/conda-forge/scikit-data
:alt: Anaconda-Server Badge

.. image:: https://anaconda.org/conda-forge/scikit-data/badges/downloads.svg
:target: https://anaconda.org/conda-forge/scikit-data
:alt: Anaconda-Server Badge


About SciKit Data
=================

The propose of this library is to allow the data analysis process more easy and automatic.

This library is based on some important libraries as:

- pandas;
- jupyter;
- matplotlib;
- scikit-learn;


* Free software: MIT license
* Documentation: https://skdata.readthedocs.io.

Features
--------

Books used as reference to guide this project:

- https://www.packtpub.com/big-data-and-business-intelligence/clean-data
- https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis
- https://www.packtpub.com/big-data-and-business-intelligence/mastering-machine-learning-scikit-learn

Some other materials used as reference:

- https://github.com/rsouza/MMD/blob/master/notebooks/3.1_Kaggle_Titanic.ipynb
- https://github.com/agconti/kaggle-titanic/blob/master/Titanic.ipynb
- https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb


This project contemplates the follow features:

- Data conversions:

- soon ...
- Data collection:

- soon ...
- Data cleaning:

- ...
- Data storage:

- soon ...
- Data integration:

- soon ...
- Data manipulation:

- ...
- Outliers removal:

- ...


Installing scikit-data
======================

Using conda
-----------

Installing `scikit-data` from the `conda-forge` channel can be achieved by adding `conda-forge` to your channels with:

.. code-block:: console

$ conda config --add channels conda-forge


Once the `conda-forge` channel has been enabled, `scikit-data` can be installed with:

.. code-block:: console

$ conda install scikit-data


It is possible to list all of the versions of `scikit-data` available on your platform with:

.. code-block:: console

$ conda search scikit-data --channel conda-forge


Using pip
---------

To install scikit-data, run this command in your terminal:

.. code-block:: console

$ pip install skdata

If you don't have `pip`_ installed, this `Python installation guide`_ can guide
you through the process.

.. _pip: https://pip.pypa.io
.. _Python installation guide: http://docs.python-guide.org/en/latest/starting/installation/




=======
History
=======

0.1.0 (2016-08-14)
------------------

* First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-data-0.1.2.tar.gz (18.9 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page