Skip to main content

Metapackage of Scikit-HEP project libraries for Particle Physics.

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/gitter/room/gitterHQ/gitter.svg https://img.shields.io/pypi/v/scikit-hep.svg https://img.shields.io/conda/vn/conda-forge/scikit-hep.svg https://zenodo.org/badge/DOI/10.5281/zenodo.1043949.svg https://github.com/scikit-hep/scikit-hep/workflows/CI/badge.svg https://codecov.io/gh/scikit-hep/scikit-hep/graph/badge.svg?branch=master

Project info

The Scikit-HEP project is a community-driven and community-oriented project with the aim of providing Particle Physics at large with an ecosystem for data analysis in Python embracing all major topics involved in a physicist’s work. The project started in Autumn 2016 and its packages are actively developed and maintained.

It is not just about providing core and common tools for the community. It is also about improving the interoperability between HEP tools and the Big Data scientific ecosystem in Python, and about improving on discoverability of utility packages and projects.

For what concerns the project grand structure, it should be seen as a toolset rather than a toolkit.

Getting in touch

There are various ways to get in touch with project admins and/or users and developers.

scikit-hep package

scikit-hep is a metapackage for the Scikit-HEP project.

Installation

You can install this metapackage from PyPI with pip:

python -m pip install scikit-hep

or you can use Conda through conda-forge:

conda install -c conda-forge scikit-hep

All the normal best-practices for Python apply; you should be in a virtual environment, etc.

Package version and dependencies

Please check the setup.cfg and requirements.txt files for the list of Python versions supported and the list of Scikit-HEP project packages and dependencies included, respectively.

For any installed scikit-hep the following displays the actual versions of all Scikit-HEP dependent packages installed, for example:

>>> import skhep
>>> skhep.show_versions()

System:
    python: 3.10.10 | packaged by conda-forge | (main, Mar 24 2023, 20:08:06) [GCC 11.3.0]
executable: /srv/conda/envs/notebook/bin/python
   machine: Linux-5.15.0-72-generic-x86_64-with-glibc2.27

Python dependencies:
       pip: 23.1.2
     numpy: 1.24.3
     scipy: 1.10.1
    pandas: 2.0.2
matplotlib: 3.7.1

Scikit-HEP package version and dependencies:
        awkward: 2.2.2
boost_histogram: 1.3.2
  decaylanguage: 0.15.3
       hepstats: 0.6.1
       hepunits: 2.3.2
           hist: 2.6.3
     histoprint: 2.4.0
        iminuit: 2.21.3
         mplhep: 0.3.28
       particle: 0.22.0
          pylhe: 0.6.0
       resample: 1.6.0
          skhep: 2023.06.09
         uproot: 5.0.8
         vector: 1.0.0

Note on the versioning system:

This package uses Calendar Versioning (CalVer).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-hep-2023.8.2.tar.gz (25.3 kB view details)

Uploaded Source

Built Distribution

scikit_hep-2023.8.2-py3-none-any.whl (22.3 kB view details)

Uploaded Python 3

File details

Details for the file scikit-hep-2023.8.2.tar.gz.

File metadata

  • Download URL: scikit-hep-2023.8.2.tar.gz
  • Upload date:
  • Size: 25.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for scikit-hep-2023.8.2.tar.gz
Algorithm Hash digest
SHA256 e8b23deed947a9668076ccf5e2d33e57384cb039d34b2fe83cb98339ee54da0b
MD5 4d22a238067303651f7ca48130f636ae
BLAKE2b-256 50e255539072b5f95932c46d75f4663c505c30b69fb6d3bf49a587fa933dfb0a

See more details on using hashes here.

File details

Details for the file scikit_hep-2023.8.2-py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_hep-2023.8.2-py3-none-any.whl
Algorithm Hash digest
SHA256 90482ce71e018c444d0885a3720edee996b1b05f9b9e291431761382315c1479
MD5 e6809c95f7c6fc3d8ee7c86c69d8476b
BLAKE2b-256 6d760ab378182e41b180277fc512ff39d35cd4d990f414f3ed83a79ffb78af35

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page