Skip to main content

Metapackage of Scikit-HEP project libraries for Particle Physics.

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/gitter/room/gitterHQ/gitter.svg https://img.shields.io/pypi/v/scikit-hep.svg https://img.shields.io/conda/vn/conda-forge/scikit-hep.svg https://zenodo.org/badge/DOI/10.5281/zenodo.1043949.svg https://github.com/scikit-hep/scikit-hep/workflows/CI/badge.svg https://codecov.io/gh/scikit-hep/scikit-hep/graph/badge.svg?branch=master

Project info

The Scikit-HEP project is a community-driven and community-oriented project with the aim of providing Particle Physics at large with an ecosystem for data analysis in Python embracing all major topics involved in a physicist’s work. The project started in Autumn 2016 and its packages are actively developed and maintained.

It is not just about providing core and common tools for the community. It is also about improving the interoperability between HEP tools and the Big Data scientific ecosystem in Python, and about improving on discoverability of utility packages and projects.

For what concerns the project grand structure, it should be seen as a toolset rather than a toolkit.

Getting in touch

There are various ways to get in touch with project admins and/or users and developers.

scikit-hep package

scikit-hep is a metapackage for the Scikit-HEP project.

Installation

You can install this metapackage from PyPI with pip:

python -m pip install scikit-hep

or you can use Conda through conda-forge:

conda install -c conda-forge scikit-hep

All the normal best-practices for Python apply; you should be in a virtual environment, etc.

Package version and dependencies

Please check the setup.cfg and requirements.txt files for the list of Python versions supported and the list of Scikit-HEP project packages and dependencies included, respectively.

For any installed scikit-hep the following displays the actual versions of all Scikit-HEP dependent packages installed, for example:

>>> import skhep
>>> skhep.show_versions()

System:
    python: 3.10.10 | packaged by conda-forge | (main, Mar 24 2023, 20:08:06) [GCC 11.3.0]
executable: /srv/conda/envs/notebook/bin/python
   machine: Linux-5.15.0-72-generic-x86_64-with-glibc2.27

Python dependencies:
       pip: 23.1.2
     numpy: 1.24.3
     scipy: 1.10.1
    pandas: 2.0.2
matplotlib: 3.7.1

Scikit-HEP package version and dependencies:
        awkward: 2.2.2
boost_histogram: 1.3.2
  decaylanguage: 0.15.3
       hepstats: 0.6.1
       hepunits: 2.3.2
           hist: 2.6.3
     histoprint: 2.4.0
        iminuit: 2.21.3
         mplhep: 0.3.28
       particle: 0.22.0
          pylhe: 0.6.0
       resample: 1.6.0
          skhep: 2023.06.09
         uproot: 5.0.8
         vector: 1.0.0

Note on the versioning system:

This package uses Calendar Versioning (CalVer).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_hep-2024.8.1.tar.gz (25.4 kB view details)

Uploaded Source

Built Distribution

scikit_hep-2024.8.1-py3-none-any.whl (22.3 kB view details)

Uploaded Python 3

File details

Details for the file scikit_hep-2024.8.1.tar.gz.

File metadata

  • Download URL: scikit_hep-2024.8.1.tar.gz
  • Upload date:
  • Size: 25.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for scikit_hep-2024.8.1.tar.gz
Algorithm Hash digest
SHA256 157307b4f5c133c3c7c096df949d4add1f4bbe2598df95cf4e39ded93ee58a66
MD5 7b2182f8ea317d05ce919ca73d007be7
BLAKE2b-256 dfc7b306f4fae3cad22741858ffe19da477e5c1615b9181b659683f739ea046e

See more details on using hashes here.

File details

Details for the file scikit_hep-2024.8.1-py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_hep-2024.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6a0384e4d747b23b3fb82789ac1f37bc6fcdb6fc24d745deca51e88becfea501
MD5 cb2e950f5cb000ad6e12d0f1caa991e4
BLAKE2b-256 3f4ba62a3992582d41d6ab9fee56bc098098a76f7474fbf7c5c581364c24b84c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page