Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Note scikit-learn was previously referred to as scikits.learn.

Dependencies

scikit-learn is tested to work under Python 2.6, Python 2.7, and Python 3.4. (using the same codebase thanks to an embedded copy of six). It should also work with Python 3.3.

The required dependencies to build the software are NumPy >= 1.6.2, SciPy >= 0.9 and a working C/C++ compiler.

For running the examples Matplotlib >= 1.1.1 is required and for running the tests you need nose >= 1.1.2.

This configuration matches the Ubuntu Precise 12.04 LTS release from April 2012.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

Development

Code

GIT

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

Contributing

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.15.0.tar.gz (7.0 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.15.0-cp34-none-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.4 Windows x86-64

scikit_learn-0.15.0-cp34-none-win32.whl (2.6 MB view details)

Uploaded CPython 3.4 Windows x86

scikit_learn-0.15.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.15.0-cp27-none-win_amd64.whl (2.9 MB view details)

Uploaded CPython 2.7 Windows x86-64

scikit_learn-0.15.0-cp27-none-win32.whl (2.7 MB view details)

Uploaded CPython 2.7 Windows x86

scikit_learn-0.15.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit-learn-0.15.0.win-amd64-py3.4.exe (3.0 MB view details)

Uploaded Source

scikit-learn-0.15.0.win-amd64-py2.7.exe (3.1 MB view details)

Uploaded Source

scikit-learn-0.15.0.win32-py3.4.exe (2.8 MB view details)

Uploaded Source

scikit-learn-0.15.0.win32-py2.7.exe (2.9 MB view details)

Uploaded Source

File details

Details for the file scikit-learn-0.15.0.tar.gz.

File metadata

File hashes

Hashes for scikit-learn-0.15.0.tar.gz
Algorithm Hash digest
SHA256 67ae5dbe5c1a28b469007708d65c59b0af192b2a9396c33d0b2629c6304e4596
MD5 7017e300ee98475d2c3648ba9b9046b5
BLAKE2b-256 a2f4ea25fe640fadca8a8d860a397f77c427737fbdbc3edb04e8070680f850a0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.0-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.0-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 1cfcbac00072e2f78f4a7751896bf9ec105c1f772b07d38d6797294f3869bce4
MD5 5be01e312be5e0f99e7ec2ad27f8ebea
BLAKE2b-256 527e63da2bcf085c308e7d14bc00242ceb1bbbf842cb5bad2e4c55abea164082

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.0-cp34-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.0-cp34-none-win32.whl
Algorithm Hash digest
SHA256 b1d01e17e6eccef29a9a35d3c919d294044669167164fdb3ef130b0db5e6b5c5
MD5 df15d7b80897c46d34b595579dfbf8b0
BLAKE2b-256 a277108e926c1cb8431061a3de48a6dc6ea9ef1615c5cac1caa9ea2a5622c36c

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4d1189a05e73aaed9a1a0a58bfd9599690f02d3a4d4e441944ed02e96d03e3dd
MD5 a25bc0f839df114974fee798fc1642de
BLAKE2b-256 37e4653a9f4aed684a4f740f04c0b3472cbc97ca363249b4deefa4f0220ffaac

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.0-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.0-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 d2cc32ee9389396ed34d0f98776a264aa121ee361b9e43213247bc3aa51b8479
MD5 664b66f105b4b96f4bcaed84b6cb5265
BLAKE2b-256 f32b37f17e63620ba02fe70e8ddec4c86e53ed290026296b38e50631f0587ebc

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.0-cp27-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 1ec70e9557f764c36796fa3ffad72d42d752a326daef3421de9eab8846ad91fa
MD5 b79bcb085e05d71d19cf70632d1cc13e
BLAKE2b-256 3507406f29749596a25c3a4b3cad1476388c1e12a3bb9535b29802992bc32233

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 52d1c8819a3ddeb0eeb2c138bc5cb4129f0555a8e4de380c64ff72215be7455e
MD5 1e9e6e85b0041500c65feaf6a6cb3414
BLAKE2b-256 2e5fc1876ffd448c86fa49c91f356db3537dd5b858a50f1c59b30f856ba27907

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.15.0.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.0.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 34d60d41d9f2c06a1925385f422d41f0cd0502624816931b8429d5e4c9cd936e
MD5 3302000da8311d2b89f9420cee36411f
BLAKE2b-256 05909d5849aaca1161b43a29de5923834b0b8625d6e830a27753d35d3287b18b

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.15.0.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.0.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 65bcf41df91bc221606b9589fff82eafc6b235345505813dfc950a3dcd25d5c9
MD5 3960b8284bdbea6380d2fcee291eb992
BLAKE2b-256 473d2e55624c741a72f439e744d47af37f6490a886c9839d5023323f5370102b

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.15.0.win32-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.0.win32-py3.4.exe
Algorithm Hash digest
SHA256 6f2de06d5960f459e4ae994047fca75191d13d56c727d1636c3d91aab6733983
MD5 88f0dd62403d4cca48226aa63b982490
BLAKE2b-256 b0c003d6201d4f0f398664f178dd33a185d79a0155027957fb3c91796ec9cd95

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.15.0.win32-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.0.win32-py2.7.exe
Algorithm Hash digest
SHA256 7251dc084b768d165092c422edc2561959c5cec4f2d82d604af5758b5eb1658d
MD5 5c10c2e662f5cc7033f4a204cc827eb2
BLAKE2b-256 6152a2e148892ab729652504b98f5cc8040a0c4105c031512c8ec41e44ad043f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page