Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Note scikit-learn was previously referred to as scikits.learn.

Dependencies

scikit-learn is tested to work under Python 2.6, Python 2.7, and Python 3.4. (using the same codebase thanks to an embedded copy of six). It should also work with Python 3.3.

The required dependencies to build the software are NumPy >= 1.6.2, SciPy >= 0.9 and a working C/C++ compiler.

For running the examples Matplotlib >= 1.1.1 is required and for running the tests you need nose >= 1.1.2.

This configuration matches the Ubuntu Precise 12.04 LTS release from April 2012.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

Development

Code

GIT

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

Contributing

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.15.1.tar.gz (7.0 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.15.1-cp34-none-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.4 Windows x86-64

scikit_learn-0.15.1-cp34-none-win32.whl (2.6 MB view details)

Uploaded CPython 3.4 Windows x86

scikit_learn-0.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.15.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.15.1-cp27-none-win_amd64.whl (2.9 MB view details)

Uploaded CPython 2.7 Windows x86-64

scikit_learn-0.15.1-cp27-none-win32.whl (2.7 MB view details)

Uploaded CPython 2.7 Windows x86

scikit_learn-0.15.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (5.1 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit-learn-0.15.1.win-amd64-py3.4.exe (3.0 MB view details)

Uploaded Source

scikit-learn-0.15.1.win-amd64-py2.7.exe (3.1 MB view details)

Uploaded Source

scikit-learn-0.15.1.win32-py3.4.exe (2.8 MB view details)

Uploaded Source

scikit-learn-0.15.1.win32-py2.7.exe (2.9 MB view details)

Uploaded Source

File details

Details for the file scikit-learn-0.15.1.tar.gz.

File metadata

File hashes

Hashes for scikit-learn-0.15.1.tar.gz
Algorithm Hash digest
SHA256 4b13456727b9310857f12cc7b9d1c62d59f3ef602fea9d391afc0c8c847ed17d
MD5 236aa05b1a6d067c28f34d5e9942af17
BLAKE2b-256 051a1139353f1acfbcfb65e3a365bb7f6fac6caade67ebd6b542a2587fc98184

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 3c68bbc934ee6a2ab1a8444b93bd423a3e8760507c6e2058ad72d0df48341f98
MD5 35a252383f6eff19feaebef04290b742
BLAKE2b-256 0e82152cbfc8236786c3a050cc138995036bc971e04ad5d7d0edbc36799998b0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.1-cp34-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 e7f458a64bd36f0d1323f6314f25da25fb14a9b607576c99d2887394cbf47788
MD5 6fc88d57fce29ceb159c6afbf86902d4
BLAKE2b-256 4ad37f0f63108de794983e4fd09dd03ff130b60cf1ef5ed191581186379b81e1

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f6fc4a25a1990de463e7844019d3243f792672475c63c2957f349c1c1748238
MD5 b19c1ea3bbe2e9dff217a1c9aded58d8
BLAKE2b-256 76f3e6879d7caff660d5e8e5e438e4d57f603645045ae20d5445c413f4503c38

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45880722cfe267c2c158eff7ab70262c170eeaa3ef971bfeb7a1eeb391815013
MD5 3c4839336c811614eced8a77e3b1f0f8
BLAKE2b-256 7bf585c8707c9dd05bedd4083fae7b77bc7f9ce1f5cf1cf56391414102f13924

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.1-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 a0d3c1d4feb6d1bf07fed1f95541d212265f87655b01d5e9f775cf322f96c648
MD5 f6f97c20ac6846132f86b7dde85d04c0
BLAKE2b-256 f30d4215c0b374779ea1197acc20759c89cb77a774e04971c17a0053421ee996

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.1-cp27-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 c9bc4d14225b95c286c56eeb7ed21135c85dfe1db6487e389426ca5bfca4595a
MD5 7db988b8103cdb16a023149286c95edc
BLAKE2b-256 021f04294f9bde5748fd92e647a13c6e030da058eed6ff34e628bbaf2ffbad12

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.15.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.15.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 913253551bdd8cc99a89e24512d393c82c860219f7e6164f802b725d7d3466ed
MD5 6c261c02649821434def58a51a6038e6
BLAKE2b-256 ccdd3bebe2a181bb4d4c4283ce414a5f69e6593728e5ac27a4554d8b06ab9f35

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.15.1.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.1.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 7ac43a86d5aa804518e188fe65ed13a9ff37400972f67b6f374be9a0e8c739c2
MD5 227bcbdf9115860d28925278d96697b3
BLAKE2b-256 3c269c52b34a19c4e99d39402dfe05d1660c192eebc8912f098f9b206b25cebd

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.15.1.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.1.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 f4063df0e176270a0abb355ea35f4e14e1239c84ca6c328539642398462a743b
MD5 92a29fd6a8d423de1bc9d742458cdd7d
BLAKE2b-256 37321107ef361b2af6490195de9125c4936cc0872f4ef128b23b6654204b1cb0

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.15.1.win32-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.1.win32-py3.4.exe
Algorithm Hash digest
SHA256 4e13f7f71225db798b255911caf4c15ac0f569df3938f537febf7d4498468feb
MD5 929659584cd919f3ce3201c58392a4ee
BLAKE2b-256 4a74e2bc9e30ec2982741b7426623ebbeeb146f7b2111c4bab3ad83d77bfd874

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.15.1.win32-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.15.1.win32-py2.7.exe
Algorithm Hash digest
SHA256 61af29a289fa140b5f338ae222b59bac4c9700feb4c996b6efccd8c482059cf4
MD5 837f0f6a460dbdefadf87363d3a8fb3a
BLAKE2b-256 b622340e4d5779bf1a57b0d07fc944ddbc0d2e5301c3dc0a2707b327639997ed

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page