Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Note scikit-learn was previously referred to as scikits.learn.

Dependencies

scikit-learn is tested to work under Python 2.6, Python 2.7, and Python 3.4. (using the same codebase thanks to an embedded copy of six). It should also work with Python 3.3.

The required dependencies to build the software are NumPy >= 1.6.1, SciPy >= 0.9 and a working C/C++ compiler.

For running the examples Matplotlib >= 1.1.1 is required and for running the tests you need nose >= 1.1.2.

This configuration matches the Ubuntu Precise 12.04 LTS release from April 2012.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

Development

Code

GIT

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

Contributing

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.16.0.tar.gz (7.3 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.16.0-cp34-none-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.4 Windows x86-64

scikit_learn-0.16.0-cp34-none-win32.whl (2.7 MB view details)

Uploaded CPython 3.4 Windows x86

scikit_learn-0.16.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.16.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.16.0-cp27-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 2.7 Windows x86-64

scikit_learn-0.16.0-cp27-none-win32.whl (2.8 MB view details)

Uploaded CPython 2.7 Windows x86

scikit_learn-0.16.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.4 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit-learn-0.16.0.win-amd64-py3.4.exe (3.2 MB view details)

Uploaded Source

scikit-learn-0.16.0.win-amd64-py2.7.exe (3.3 MB view details)

Uploaded Source

scikit-learn-0.16.0.win32-py3.4.exe (3.0 MB view details)

Uploaded Source

scikit-learn-0.16.0.win32-py2.7.exe (3.1 MB view details)

Uploaded Source

File details

Details for the file scikit-learn-0.16.0.tar.gz.

File metadata

File hashes

Hashes for scikit-learn-0.16.0.tar.gz
Algorithm Hash digest
SHA256 414fe417b6ff17235e40d955f94a6d48d107c104285e04f2d9a01eb4cac4d96c
MD5 aab04c077f91615137c0da266cf29398
BLAKE2b-256 1d54397f4113723a298c01a1d74f0e2f5472658fbaac3d0b98abc199a9b8a129

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.16.0-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.16.0-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 42ea686bf5f8594d1fb2230bb8341513c3e09e4fdf5a2607748fc5ad15457e03
MD5 9160c103eae243e2eb415792ab736b41
BLAKE2b-256 69ca8514eb0bc4c50b13077ab7266a2733e47cf203b4c23b22dfea27703d2227

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.16.0-cp34-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.16.0-cp34-none-win32.whl
Algorithm Hash digest
SHA256 0c1aa9668793332168bc74830e24b5ff6a038f8b85990d9517256dc52bcece1a
MD5 4b4eeacd95270ae835fd136a1915b461
BLAKE2b-256 30c2c7f63bbed99398ab833a3daf22e3872e34e88056bd444e43fb2c8cd2bfbf

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.16.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.16.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c0c5661517b8c3a7b880a6a18df4df883ddbb2c3b21bc4972437e726c2d55ae7
MD5 b72085f29b7956168bb259210de60100
BLAKE2b-256 c14fc8a3322c4a04d10c1b3b9718d7547eabae23e9883507d086866cd3d182ec

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.16.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.16.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 cd10c7f58bf4ee54ed7d4f8ba414f541dd1c50c857252c6a2cd6319fc1cdaddf
MD5 2297326a4cf1a8407de04011b52946e7
BLAKE2b-256 6fe7088d7ba65aaa41b892d2ea5f3eb20a7cded65190d5d69066ace2210d334e

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.16.0-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.16.0-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 9ac01114e8c9d9725b43e9094b089d14a24444fec5db8a0fcbfd2a6f608d613c
MD5 1c2c64ddf790c7ffbb9cf16f62639388
BLAKE2b-256 a36faec142207ecb2fcd99558ec73533e0472ef7de51816541363c115dfff287

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.16.0-cp27-none-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.16.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 3f1184b7ad328d970623e7e67ee8bcf8d11e5305a1831c15d39b6f2fad2896a5
MD5 cbfdfac448ee1344addab2bcb21a7c83
BLAKE2b-256 56544ae6cbdaedd0c923f9b490d01f01d9acb0edba721dc4694e9b1d37847ca8

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.16.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.16.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 be4b5de09acdc00452a276a3b58322be65ee2ba1e01aacb6d78d4d166cb6798f
MD5 db1c4ce62a96bd10835d165c952f6664
BLAKE2b-256 1cc2a74b0b66b397e65b47f58bb733760eb92d588aec15e61cc5919b73fb1301

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.16.0.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.16.0.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 8598c5a66289e88b588b3a5c2951e2fd7c4c2422374539ea2d049e6c81079aec
MD5 26ee251e57a81096213df71a5aaea5fe
BLAKE2b-256 16d6ade04acfab6e2fd6a917952fbc9f1f1dc959854d9dd18a6567e558a7f8b0

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.16.0.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.16.0.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 6ce593210d892dbf26a11daf16cda27be01aa61cd34eaf48daa0c2fcd4636ffb
MD5 f10afc4e1f3ed46a1e71d4f41abb2fa4
BLAKE2b-256 dd6a1c2bfabb368a5c097fb7c24f11d24697ee0c3e038857152c580e5d14997a

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.16.0.win32-py3.4.exe.

File metadata

File hashes

Hashes for scikit-learn-0.16.0.win32-py3.4.exe
Algorithm Hash digest
SHA256 5e6eec93aabda0f0b33f4816b6fc2e1339b11a7305585713976ef3c5924da1ec
MD5 444030ca534de03212b872212cac3fc3
BLAKE2b-256 3fb60db5ddfbc62d3b49fbc5b55b491ca06b05004f79637109e10c529c4061e2

See more details on using hashes here.

Provenance

File details

Details for the file scikit-learn-0.16.0.win32-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.16.0.win32-py2.7.exe
Algorithm Hash digest
SHA256 bd66c75550101ea801674906e21c067e39cea7ba0ff884794e37625fd3c287b2
MD5 4a35ac6da8e2e7cdda3ae68ac2723552
BLAKE2b-256 6234783e7d1c74bf203ed780c3ce343b2a3d36beee495e7d71ad095aa67c8318

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page