Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis AppVeyor Codecov CircleCI Python27 Python35 PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 2.7 or >= 3.3)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

For running the examples Matplotlib >= 1.1.1 is required.

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Setting up a development environment

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.19.0.tar.gz (9.3 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.19.0-cp36-cp36m-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

scikit_learn-0.19.0-cp36-cp36m-win32.whl (3.9 MB view details)

Uploaded CPython 3.6m Windows x86

scikit_learn-0.19.0-cp36-cp36m-manylinux1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.19.0-cp36-cp36m-manylinux1_i686.whl (11.6 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.19.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.19.0-cp35-cp35m-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.5m Windows x86-64

scikit_learn-0.19.0-cp35-cp35m-win32.whl (3.9 MB view details)

Uploaded CPython 3.5m Windows x86

scikit_learn-0.19.0-cp35-cp35m-manylinux1_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.19.0-cp35-cp35m-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.19.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.19.0-cp34-cp34m-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.4m Windows x86-64

scikit_learn-0.19.0-cp34-cp34m-win32.whl (3.9 MB view details)

Uploaded CPython 3.4m Windows x86

scikit_learn-0.19.0-cp34-cp34m-manylinux1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.19.0-cp34-cp34m-manylinux1_i686.whl (11.6 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.19.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_learn-0.19.0-cp27-cp27mu-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.19.0-cp27-cp27mu-manylinux1_i686.whl (11.3 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.19.0-cp27-cp27m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 2.7m Windows x86-64

scikit_learn-0.19.0-cp27-cp27m-win32.whl (4.0 MB view details)

Uploaded CPython 2.7m Windows x86

scikit_learn-0.19.0-cp27-cp27m-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.19.0-cp27-cp27m-manylinux1_i686.whl (11.3 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.19.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.8 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file scikit-learn-0.19.0.tar.gz.

File metadata

File hashes

Hashes for scikit-learn-0.19.0.tar.gz
Algorithm Hash digest
SHA256 24f5cb67559e0df27827b1804b197431c08880d2ec9285724fac90906830021f
MD5 5e7b6cb30f77ad0f219be08242313d88
BLAKE2b-256 c238e3b0333e661ab411545583cb24940223917fe7ffc9c68a77730dce3b10b0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d2f673ffbf2fcd80482f09cfb79115f3d64e24398aa83562c4f786dfb79dff3c
MD5 c80e03c295c34702a7a3f7d7f898152d
BLAKE2b-256 622407db43131bee16d0da689b6eb245238f43e9bd47656ab168c7231a44ef64

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 dc0b855d630c9e18edc867ccbc755b949755863d5373b736fec5a4c84eca2a18
MD5 72d9bda9b1246e26495b4e4e3afc83e1
BLAKE2b-256 46f3625e6973ab064ac4844e068eca9b2ac5eb738d0ae803ef862447c5cb221a

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4c164b97092c14db5615ec8aeef599e2083ac7ea7f9b7307cda8af058740f957
MD5 d1e1dcc8868368f31d3f7866d4449390
BLAKE2b-256 a4b3209652a5d60ce4a2a8a35ad893d7565bbb0f87ce043264ba5c9e7de304cd

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d0b5454764366cf390387049447156e073c90f82f8b139a0ec397823c7452fc8
MD5 426c455e93b947a4cf4e2fcc44f84ece
BLAKE2b-256 c87d9078a1b3b764d4c3142ef2433f39de0c48238ad0c63732c92c49269c36ab

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 430e70de907a65d3f92a1a1b28417b0924b01cee6eac77507ed0739192e2762a
MD5 ae7056c27a3b0e7631083b708d2e61f3
BLAKE2b-256 c8044c12098fed15b053bde9426d4299c4ef8b1bdae0d9352f4f7714046b415f

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 614e834c47ef65d43ec57173a0b5dfadee5d4b5a692b89383faa3f7c2dab9ead
MD5 0a44c4d7506065710fad5a7daadd368b
BLAKE2b-256 52311e1d39b77675ef1fb328fab120ddb179e67bb3788961951350c056385985

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 32babf6b1ce2a3efb960ebaa8d1cffeccb7db0a136cd5dd292ff0520922d85b1
MD5 1da83fd60950a8ef7bef89856843683e
BLAKE2b-256 01190433f11b0c443eaec6325f268345cda717954751f60c66863595dce78245

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 74c36047878abcf8d9a7d360ad0ac663f1204df0e6d7c70c2f7c8d79af879e02
MD5 96559ff9461073f1f8abf036ab41e31a
BLAKE2b-256 436ebed78723a2da55e6383da7a7340b919e13c550f79cbe6f41a7960b82a5f5

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 49412dab4fb8597f80ef075ed3cf824f3c4dbf479544d60e8f897bef153c2e0a
MD5 87a84519debabb0a11c9a11559ef2964
BLAKE2b-256 2b3134f2cf37bfeec8ed2b96e8bdcf2f4b43aa157e0e344b10ff1da226f25ee9

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a5d6157e68babaac46196a5d65f8a5f9d8403abcfaef8067d2e50333ae16a23c
MD5 a760b3a41208ef14e2752e285a1f9ecc
BLAKE2b-256 74729421ff5e06ec983dd4948be5429a784520a43d0edd70c0d4e4be8069bcdc

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 35377226e0674f64418eb9c5cd0ef312558673ed08a1fa69e7f246f1449fa84e
MD5 457a1b7230fa31e4c1d384995a477324
BLAKE2b-256 1dc79d7f95197c7fe4bc7ba215e079a238c517216d02835b10c5f64b77ea0d12

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 21691bc3dfd032ea6ebb462afd666216054bdaaf5ded463d8e4608f5f4bd01b4
MD5 f2967aa06088130256852546e79ab285
BLAKE2b-256 a70fcebd63c067a0e4f401db73c9a942a461f3038e073413d9003d8642fc57b7

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8cc0793afa9e8efa72cb8e6c37f3d20096c5b91de317de699577e6b7ba5eca80
MD5 5c4c346dc32da0fdb5d19ff7849f3078
BLAKE2b-256 2a5bfb8720631a5fe856afb8cf32c8c20aa0fa337e92b0f57f5ff3eb473623cd

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6e05fe0994c5947856b708a0648bd8bcda72a767bcf0e1cede86afb98ad5fd22
MD5 310393a3042b78ff71ab464271b35937
BLAKE2b-256 8c5747adc404bb4a9fa4830584388e5e2d9edd00bb4a7cd93d61817e4af74d11

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e4f2f70c7cdd247984c60aa15d7829a5da14fd01af90d140689e030352a092a2
MD5 831c10f4f69eeca523c19e477b0ffcd9
BLAKE2b-256 e6b8f72dee2d059483986a07999300c7748234d2b5bf57179a720aaf3f1487a5

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9aff0de6d706e3e4ee8150a486c4eb4de87895caa3cf7507be8c565dba8c1959
MD5 6e29e40baa9ca3b155012c9da7fc69de
BLAKE2b-256 0e46cf53c3d9fd71a4e85714aa56bd32ca607ad945b4284d1e76bc909c94295a

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9d6796062b5479494aa847933cfd15cdf5589b48ced2545386d0a51173f653dc
MD5 b9f184e8492e57b5578542e19a98af67
BLAKE2b-256 a7889e84c9d84e8b79e926fc67594a03a86be34140a2fbf34666f5c58fc023b0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 6235192a5c38dcc89de294fc8b795ec4d8f47b741d597ea4ceed56d36434b17c
MD5 43b1ec70fd8b6f1120f5dfbd35beb07a
BLAKE2b-256 da968bcf04b87c97421c04fd643e087b56e6b65c19639d542dd442baf9286ea6

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 59482722de13da24317734195bac8cc731a068105bfcb50aab6981492d794a23
MD5 757db965c7b8065e1619ba5eb1574558
BLAKE2b-256 6625442771cdef820b1b4353a2edda0558bba29fb4a39ed733506c598f209ffa

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8d1693a190eb46a97c8b88e3c77b24befd40e8525836493c94e7ac872f91807c
MD5 b960c6490b4118c7ead0f5f43c8c7494
BLAKE2b-256 cab6f19303b0af2e87cedc7543b30678c9a5f511df6dff1eabaaeecd4e9aa0dd

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2477dbb81c02cf04067e3ebd55292d019666f65f97bd13deb5f0216577599460
MD5 10be6d71e9b778f0a2b0e81531a2b175
BLAKE2b-256 4eedfab3f5dfcccae2174486da4564756b960b2c8f795555d3e6e84c1ca50bbb

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.19.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.19.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1243c41698244934edcb866aff46f8e7f019dfcd9e99019ae98a244422c45e9a
MD5 5ed7b39a5ea9ed1c8ebbf8b9286afc16
BLAKE2b-256 6022457acd1acad1ef22aa9e62483754defe4c78726ebaaa6bb358caeca8b7ab

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page