Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI PythonVersion PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.5)

  • NumPy (>= 1.11.0)

  • SciPy (>= 0.17.0)

  • joblib (>= 0.11)

Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 0.21 and later require Python 3.5 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 1.5.1). For running the examples Matplotlib >= 1.5.1 is required. A few examples require scikit-image >= 0.12.3, a few examples require pandas >= 0.18.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 3.3.0 installed):

pytest sklearn

See the web page http://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.22.tar.gz (6.9 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.22-cp38-cp38-win_amd64.whl (6.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-0.22-cp38-cp38-win32.whl (5.5 MB view details)

Uploaded CPython 3.8 Windows x86

scikit_learn-0.22-cp38-cp38-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8

scikit_learn-0.22-cp38-cp38-manylinux1_i686.whl (6.3 MB view details)

Uploaded CPython 3.8

scikit_learn-0.22-cp38-cp38-macosx_10_9_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

scikit_learn-0.22-cp37-cp37m-win_amd64.whl (6.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

scikit_learn-0.22-cp37-cp37m-win32.whl (5.5 MB view details)

Uploaded CPython 3.7m Windows x86

scikit_learn-0.22-cp37-cp37m-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.22-cp37-cp37m-manylinux1_i686.whl (6.3 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.22-cp37-cp37m-macosx_10_6_intel.whl (10.9 MB view details)

Uploaded CPython 3.7m macOS 10.6+ intel

scikit_learn-0.22-cp36-cp36m-win_amd64.whl (6.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

scikit_learn-0.22-cp36-cp36m-win32.whl (5.5 MB view details)

Uploaded CPython 3.6m Windows x86

scikit_learn-0.22-cp36-cp36m-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.22-cp36-cp36m-manylinux1_i686.whl (6.3 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.22-cp36-cp36m-macosx_10_6_intel.whl (11.1 MB view details)

Uploaded CPython 3.6m macOS 10.6+ intel

scikit_learn-0.22-cp35-cp35m-win_amd64.whl (6.1 MB view details)

Uploaded CPython 3.5m Windows x86-64

scikit_learn-0.22-cp35-cp35m-win32.whl (5.4 MB view details)

Uploaded CPython 3.5m Windows x86

scikit_learn-0.22-cp35-cp35m-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.22-cp35-cp35m-manylinux1_i686.whl (6.3 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.22-cp35-cp35m-macosx_10_6_intel.whl (10.7 MB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

File details

Details for the file scikit-learn-0.22.tar.gz.

File metadata

  • Download URL: scikit-learn-0.22.tar.gz
  • Upload date:
  • Size: 6.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit-learn-0.22.tar.gz
Algorithm Hash digest
SHA256 314abf60c073c48a1e95feaae9f3ca47a2139bd77cebb5b877c23a45c9e03012
MD5 0b30df9c1d7ee46e098e9880a145cbc1
BLAKE2b-256 4f2c04e10167991ed6209fb251a212ca7c3148006f335f4aadf1808db2cbeda8

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 63b7c4ddd5a6ed504ee7a6d2670dc8df478b70c4e31a2d165de82c4d6f4b6e1b
MD5 ded94a8dc202af120089eb09326c2a70
BLAKE2b-256 0d413d4032e18002427785a84f6cc1f13f62f63218d85716e30dfaa47ca46b88

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp38-cp38-win32.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ac81facbda6ac2296e5d7b7518dc15d93858fda34f7d7877a5e9bbc2c8b0b5aa
MD5 54a4077065050f3ebea5d692b0fd1e53
BLAKE2b-256 c9f73d9bc3d25ffdb0d9a184008e577686ee3577f0ba95b4565380c746c43578

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bc48a36424a6af3c353827a5d68abdad132f5ca843d721852fdf8b2e8d6277d3
MD5 124166f80e08725f99b79d388314324b
BLAKE2b-256 6cf86071da4d8ce0f9d0e42b6d9de406f9adc057864dabb945d84a8b2966a9a5

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 07aaa1d639759ebfa33e747022d3fde880eb4343c6a7ddd916478be3a6b98d67
MD5 4302a9010efb9571e9159bd2869f3ac3
BLAKE2b-256 b79e828d96fc864659f46cbaad059cc90098844fd2dbdcb5c8c3a93bfb3ea8c0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 594e693aef1dca29ab5823781f8db15815f257295cff52868f0602553ee5c66b
MD5 0f7cb24756e057f490094a6f6cbe02e1
BLAKE2b-256 4d3d64d625cb82fe317c4427e582ffd21cdcfbe1ede1ccd729a916b5e291ba1e

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 06b78e6f62b6a89b00acc873ee823c99ddf4ee1d461a02ce0d22276a17d2c13e
MD5 798ac9501ad34e8e648060db2229e5de
BLAKE2b-256 9d101dd2e3436e13402cc2b16c61b5f7407fb2e8057dcc18461db0d8e3523202

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ab3f791d5663bcc8137ea2339cbbd81907d2c7f51da6ef0402a6a37ef74bd857
MD5 e026c576d6a2762dd080ca3b2c84ca20
BLAKE2b-256 f791adeacd0884a8b831ebfdea027087a5ee28496e2ea3b7b1b3921f4b660549

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0098757148ee055796370ca5f4c5887940c46f87a4989f7ca9be6a2c42803ef1
MD5 31b25828082078526373a3e57d237195
BLAKE2b-256 19968034e350d4550748277e514d0d6d91bdd36be19e6c5f40b8af0d74cb0c84

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e321baa1210d20ac9751f4f8ec5e64affc44c93992a7e61611663884cd3e4b5a
MD5 13ef8ee4e34b144be6da8de9d9e988b0
BLAKE2b-256 1eb24d98129f6bba37bf8997472e787afa61fe3b51f166fae6eb2afcbf35c35e

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp37-cp37m-macosx_10_6_intel.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp37-cp37m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 10.9 MB
  • Tags: CPython 3.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp37-cp37m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 5e426ed57851e60d2edb63a60888cc85e47b129f69f9c26eb872d8b7581c4c63
MD5 e92937a8b96e9e55a221b6ee388d10f1
BLAKE2b-256 b1db102a43a72afd2b0938ca039af6047e2a2bf5e5d5eb1bbe38ce616e2d750d

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 df3111e9a6d1b5009b45d10e98276e1e7fafefc538a6496e4e80042bba27cf68
MD5 c924cfb20b8a6c31aae3b2f7e5519ecc
BLAKE2b-256 e9fc37c2706fe0d252e89c49f0c94b94b27878f75a372ca7e5e7ea7583f61c79

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8049f6330bbd1f8dd8db587fbfb69f8150efb36a22ddb4d178a0479c027496c5
MD5 6317452bfc26f0b565c6850c5c83bf0b
BLAKE2b-256 8b1d71fb40ac9e03979abc3b5813cd8d535da4de336b434e98870b141d3bc75e

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3004fe60aca1f20b80d13698e5d9123e0d500062b548c733a9f230ab943ce334
MD5 c644007498d94aae9718b4ae1254d887
BLAKE2b-256 2ed0860c4f6a7027e00acff373d9f5327f4ae3ed5872234b3cbdd7bcb52e5eff

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8509da5e03155c872d2e646763f4d42cfbdbd460dad9b803dba7602c32b7a605
MD5 ef06615abb439cce4283b93235ec6a0e
BLAKE2b-256 c1e9ce85fad83ec27447866771f71c39e8416fbc36cd94a7557aef3786f25606

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp36-cp36m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 11.1 MB
  • Tags: CPython 3.6m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 8c524b4567bb4d5ea172aa0d8212fe1b06898c4ad130ac443bbe0e5f4bd9d104
MD5 13f57a9d57c84c61644bfc3301f2f8a4
BLAKE2b-256 83ffd8e912e96aa47abc4ffb02bb3d05eaee45c14b74d02f0abf22b97d83a888

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 09b81c1145437fd5d25a2e8419621185c22b05450a7c77ad0a568194bbd65963
MD5 ec188014baf19f5cebf1cb30e3393712
BLAKE2b-256 6a3d1d38de336ad9875a0aa4c694ca84c64db8cbf6f490872bf7862f9a686876

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp35-cp35m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 ca60076ba9e38ed936a0e7fb5a0d18cffe375840d9dc4e562df7e0f5ee066d4d
MD5 e43127864eb9865526cc913a51ae27c2
BLAKE2b-256 a121427c2a38b771b1985fd2ed9e283abb2fe4153ca73edd7627782780977f17

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 087fffad9e7604bbbaa078bdfdf6919a96495f0eb742c70dd900820224c20a0a
MD5 44cf6bed3497cb1740b00aa8c8ce759a
BLAKE2b-256 1b14b8c1c698be22f45d0d39facd667d6b0aa5f702ea4470a6ebc7ae98a46ff7

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1632967d8fbae09e6090ef6bd632681c5fc64b95378a858c59fd37b57357425e
MD5 0f4b488e963557da321a894ad335a9a3
BLAKE2b-256 0dfe4364e67e857c7c70ce4d3ea78077b3672cc742a65ae428375d89065178a0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-0.22-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: scikit_learn-0.22-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.4

File hashes

Hashes for scikit_learn-0.22-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 c252cfb331e15188d731253cffaa04a87fb0ea7aad5bff9f85229b5b883c8290
MD5 336f3092cad4f0f9eb5bc1a6dc0a6cc5
BLAKE2b-256 457937eb5647b7a157e09e65fc8de7aa01dc0390d02b936f1dc046035bf56154

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page