Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.7)

  • NumPy (>= 1.14.6)

  • SciPy (>= 1.1.0)

  • joblib (>= 0.11)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 0.23 and later require Python 3.6 or newer. scikit-learn 1.0 and later require Python 3.7 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 2.2.3). For running the examples Matplotlib >= 2.2.3 is required. A few examples require scikit-image >= 0.14.5, a few examples require pandas >= 0.25.0, some examples require seaborn >= 0.9.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.0.1 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.0.1.tar.gz (6.6 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.0.1-cp39-cp39-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.0.1-cp39-cp39-win32.whl (6.4 MB view details)

Uploaded CPython 3.9 Windows x86

scikit_learn-1.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.0.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

scikit_learn-1.0.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (23.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

scikit_learn-1.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

scikit_learn-1.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (19.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

scikit_learn-1.0.1-cp39-cp39-macosx_10_13_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

scikit_learn-1.0.1-cp38-cp38-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.0.1-cp38-cp38-win32.whl (6.4 MB view details)

Uploaded CPython 3.8 Windows x86

scikit_learn-1.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

scikit_learn-1.0.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (24.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

scikit_learn-1.0.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

scikit_learn-1.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (20.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

scikit_learn-1.0.1-cp38-cp38-macosx_10_13_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

scikit_learn-1.0.1-cp37-cp37m-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

scikit_learn-1.0.1-cp37-cp37m-win32.whl (6.4 MB view details)

Uploaded CPython 3.7m Windows x86

scikit_learn-1.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (24.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

scikit_learn-1.0.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

scikit_learn-1.0.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (21.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

scikit_learn-1.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

scikit_learn-1.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (19.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

scikit_learn-1.0.1-cp37-cp37m-macosx_10_13_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file scikit-learn-1.0.1.tar.gz.

File metadata

  • Download URL: scikit-learn-1.0.1.tar.gz
  • Upload date:
  • Size: 6.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit-learn-1.0.1.tar.gz
Algorithm Hash digest
SHA256 ac2ca9dbb754d61cfe1c83ba8483498ef951d29b93ec09d6f002847f210a99da
MD5 0c3c1ebc9b221a034a981b30c1c4cb75
BLAKE2b-256 627c596ff7b32f655f379d3abdfa82607e5cb3b70f46baad4604706511cfeb85

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c604a813df8e7d6dfca3ae0db0a8fd7e5dff4ea9d94081ab263c81bf0b61ab4b
MD5 0c5d7b8bc0303f4f8fb22f45758ee9e2
BLAKE2b-256 46cca39f26ae8e39f1c197192b582553c9edf88ddb7303b15b8bb6e695198c11

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: scikit_learn-1.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c6b9510fd2e1642314efb7aa951a0d05d963f3523e01c30b2dadde2395ebe6b4
MD5 6761aebb00f61e544b5069afd788edef
BLAKE2b-256 da38dec3ca656d450753fa3a1f3d5916b20ab2713ca1647e88b8016f6fabe72b

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc60e0371e521995a6af2ef3f5d911568506124c272889b318b8b6e497251231
MD5 aac3284a06a53732b516d7d588d2ae11
BLAKE2b-256 4333244bc82128e6ae93381326527949422be9289c94053abe974407b2fb04a7

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 944f47b2d881b9d24aee40d643bfdc4bd2b6dc3d25b62964411c6d8882f940a1
MD5 0252cf9e9b19a88ec7165e60f4cca4c8
BLAKE2b-256 538b99d0658d74a2e6277dbe40b6759581badb2790f6422369ae6a3d606b9164

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a51fdbc116974d9715957366df73e5ec6f0a7a2afa017864c2e5f5834e6f494d
MD5 bbe5f78515036e3c23700c84b9a5f1a7
BLAKE2b-256 2da648e74dc084e384bfea296bceb39e5cbcaff374ba22b7f9e2ee34fdb274b6

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 059c5be0c0365321ddbcac7abf0db806fad8ecb64ee6c7cbcd58313c7d61634d
MD5 4d99c456ea1f8f4535a066cca6004a2d
BLAKE2b-256 2d9181714d407041b3f9ec3ca95ae8dafbabb0cdc0fe29dbbccc801a38aca4b4

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 62ce4e3ddb6e6e9dcdb3e5ac7f0575dbaf56f79ce2b2edee55192b12b52df5be
MD5 325cb7f43b971018b7bdb25639c5c872
BLAKE2b-256 eee8ed0bbea3aa5c0991e3aaba8a321d3e2af76dce6275c20b361a14ae519bb1

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0.1-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 8.0 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.1-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 11a57405c1c3514227d0c6a0bee561c94cd1284b41e236f7a1d76b3975f77593
MD5 464f23ee72455fb75c9ab45741929f03
BLAKE2b-256 a676f7dbaab9101a03be7bcae47c5e3183e3c3cc3edde96617b4d132864c2419

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ebbe4275556d3c02707bd93ae8b96d9651acd4165126e0ae64b336afa2a6dcb1
MD5 e8c710f5b25ee13ea1d545c41546d206
BLAKE2b-256 b8b284f9ed357e35359e34ffd25381468e5120be863659ba9dac9ae161b391b0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_learn-1.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ee59da47e18b703f6de17d5d51b16ce086c50969d5a83db5217f0ae9372de232
MD5 244fc94b45657ebc22746def2344be2e
BLAKE2b-256 88bf522946575c1b9353930bf071a5539a8669e47c3ce4e44c7597c80bf10b06

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 648f4dbfdd0a1b45bf6e2e4afe3f431774c55dee05e2d28f8394d6648296f373
MD5 020d0afad131bffd5082284b6737049c
BLAKE2b-256 338d4b62ecd014a4d0672d58c1b85a6cc7cc10e769cb86169312e428950dc8ce

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fc75f81571137b39f9b31766e15a0e525331637e7fe8f8000a3fbfba7da3add9
MD5 e721d0e5b631bb663e0c3c764fa8c3ce
BLAKE2b-256 aebfe1ce8638e6c5234632c4d87635ba23f4b4b837ba8c85ba8f8262569cdeb1

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 515b227f01f569145dc9f86e56f4cea9f00a613fc4d074bbfc0a92ca00bff467
MD5 736dbdc7e9dbc6b9d3fddb0d463e7c86
BLAKE2b-256 65bdeffd51e0ffc142ed23f3a09080b50b0220a4bbc089c7c5b3af4c975038fc

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a800665527c1a63f7395a0baae3c89b0d97b54d2c23769c1c9879061bb80bc19
MD5 c9e081448413146bf303a5d95011f11c
BLAKE2b-256 80ce1533f2e7660fcea349204b806bd85745e288d930ff8225fd108959dfebba

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 53bb7c605427ab187869d7a05cd3f524a3015a90e351c1788fc3a662e7f92b69
MD5 00c3fa2393fb69ca395a0e65caab72e3
BLAKE2b-256 2219b93a926790dfb480e306d2224008b36fe7c47e78b55383e720f1c79f264b

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0.1-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 59b1d6df8724003fa16b7365a3b43449ee152aa6e488dd7a19f933640bb2d7fb
MD5 718f3439eb7a02b49d726615b895ea99
BLAKE2b-256 062bcf28406ea08d06375e114044d1b9a264eed7b88835d00a968b59d3f5cbbb

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-1.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 538f3a85c4980c7572f3e754f0ba8489363976ef3e7f6a94e8f1af5ae45f6f6a
MD5 aa7a538863f064dc4da5111153cf33e8
BLAKE2b-256 4994fb37ef55af98e8f4370a96f598bb0b9068d53b082e41e3e6d569be6cdf33

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_learn-1.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 02aee3b257617da0ec98dee9572b10523dc00c25b68c195ddf100c1a93b1854b
MD5 2097bcb442a5b6480baf1a6707c84457
BLAKE2b-256 783ee290a4d1eaa45e7f499c1ca3b012e6742288b14d966ccd517cc00cdd0859

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb7214103f6c36c1371dd8c166897e3528264a28f2e2e42573ba8c61ed4d7142
MD5 189f97f69a8c03c1316f0f68f45d81c4
BLAKE2b-256 dc78d89f2b1e7e98a825fd6517125aa716e0cca24585c82cf25c7087796940ce

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 32d941f12fd7e245f01da2b82943c5ce6f1133fa5375eb80caa51457532b3e7e
MD5 a0a373bca0f70468e97f1f1035f10b9a
BLAKE2b-256 adcecb69e20a50024db3584e58fa9037c87885598d9b6f27d64e2c456ec01b8b

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bd78a2442c948536f677e2744917c37cff014559648102038822c23863741c27
MD5 8753e3a950b4b77ed84f0067cf5ff3f3
BLAKE2b-256 4b4ae455f443c38efd4158fb721c0823b55367ac9d0c276316fe45b7e4455856

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fecb5102f0a36c16c1361ec519a7bb0260776ef40e17393a81f530569c916a7b
MD5 18265116acda75c48d1ade7eee012ed9
BLAKE2b-256 6a7ed41bc4dba43998890dadc6c7893f2d9b6a17bf7c9bb924458d04252ad0e6

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-1.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 46248cc6a8b72490f723c73ff2e65e62633d14cafe9d2df3a7b3f87d332a6f7e
MD5 04ecd4bc620bb5a42c973deffb34f35f
BLAKE2b-256 55f47c488fe1430f3829312f83bdecd460a018ef4177c3f9ba02ff6243506129

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.0.1-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: scikit_learn-1.0.1-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for scikit_learn-1.0.1-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 116e05fd990d9b363fc29bd3699ec2117d7da9088f6ca9a90173b240c5a063f1
MD5 eff4051dd088c645d8e54a836ac15e1a
BLAKE2b-256 102de0af5fa8fa95511ced9a43c8190791dd897c977a2e9b5299fd443751834a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page