Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • SciPy (>= 1.3.2)

  • joblib (>= 1.0.0)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 3.1.2). For running the examples Matplotlib >= 3.1.2 is required. A few examples require scikit-image >= 0.14.5, a few examples require pandas >= 1.0.5, some examples require seaborn >= 0.9.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.0.1 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.1.0.tar.gz (6.8 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.1.0-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.0-cp310-cp310-macosx_12_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.1.0-cp310-cp310-macosx_10_13_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

scikit_learn-1.1.0-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.1.0-cp39-cp39-win32.whl (6.6 MB view details)

Uploaded CPython 3.9 Windows x86

scikit_learn-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.0-cp39-cp39-macosx_12_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.1.0-cp39-cp39-macosx_10_13_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

scikit_learn-1.1.0-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.1.0-cp38-cp38-win32.whl (6.6 MB view details)

Uploaded CPython 3.8 Windows x86

scikit_learn-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.0-cp38-cp38-macosx_12_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scikit_learn-1.1.0-cp38-cp38-macosx_10_13_x86_64.whl (8.5 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file scikit-learn-1.1.0.tar.gz.

File metadata

  • Download URL: scikit-learn-1.1.0.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.10

File hashes

Hashes for scikit-learn-1.1.0.tar.gz
Algorithm Hash digest
SHA256 80f9904f5b1356adfc32406725dd94c8cc9c8d265047d98390033a6c238cbb29
MD5 bec58392868fc8b54b5431bc5ee07dd2
BLAKE2b-256 8b99b1ec652f2d60a13871a3053f312f9d78977be57e420f2a49d52ba503f1f4

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e4d41245915d0fc6fea26029349ff187b2992ef6588863e8570fc95a24697fd0
MD5 e8bdafd522804818687c70a790ad2562
BLAKE2b-256 fbe55880765410ea625a5651297c348b131029969bf399bad28fc135ae142e37

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 068ee35f08681079a9aece49236f40837dbffebe047b0813bf71873fa976b132
MD5 0767aa113df5b22097e9a85b048eef44
BLAKE2b-256 60acb9071cb5f32ed54bea2cc8a05e8dac7ab440bf2d2581f4126ba49bc725ea

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d8e83d24df9595d4ccca961a2038e331aa7e17534af0b5b15d28e6d65723d1d
MD5 dc01cf2936bafd1965963cf0d3268327
BLAKE2b-256 6d7ede0a1edef5f45930431abf078ce6de11715213b9d274166c27ea6c423e3c

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 892be17fc261dff4097c061880586226d47ccd0426d9283091e2ca65da36e645
MD5 6c83e7b693159ceecb6328bce7f39919
BLAKE2b-256 0f524127d5c413cc1b2b0847ee4f6826a93cbf7db986be00e99b3154b612c0ec

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 47c31f7e9a5689c3a2cbdf72e78570b33fa9abb42a1ca10d787516de9c4e37a4
MD5 ca6eb061050415bffe540acec500cf05
BLAKE2b-256 6de446446764f7702ff6a5540dc83f5ad9af6490dc4300c632f4edb2c5a1e1f8

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1ef67ac0d44d9ecb36bc33ccc421f683aaeb42bdd72d8a97601eaded3b43f2e4
MD5 8365e22bc94c843bfa99b751c132ca7e
BLAKE2b-256 18784bd6dd3ca2edbf97583e35adb08a84ec4d4f736b702a25cc8617f54ef970

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: scikit_learn-1.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.10

File hashes

Hashes for scikit_learn-1.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 25b8d471169711dee7667969e7db3d33c372c13701cd2ab6783d0e85b2aab300
MD5 a8eaeebe8fcdde410c9bde19a53dc3c6
BLAKE2b-256 e222ffaf71d99c72c1d2dd31354273e8f61c26b23bc48e8f359114295f00189c

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2318fc717c9ff7eb3834bbb2c3be63768e97bb3221bbf70c01537e34e4fb8a1c
MD5 005158b34e2dffa2ef0d5e02cfb5bde1
BLAKE2b-256 cac748c6db3111714d7cbba5c5b4023228466092a43241b9419923864aa4fd62

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c819d2820b783f390dda2136508483d6f4302dfba98fc974ce759e55b2247d80
MD5 e2884cb2eaea8ef7177730e4e95614ba
BLAKE2b-256 f8a7d89c8e66c5abc0bddc9499c832c01093edf7983d77f1ef6a27e58c3dc4e6

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 05f9f004afe1b415922b2ff9453a191e3082acf1065aa0f0b238250f9e147606
MD5 00f545f1e5e2d012a6aee2abfc432431
BLAKE2b-256 c13b6ed36cf58149e3f7139272f2c24db9322b6e43694237105103cd90cc64ac

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 dc6681e2f99a4a5bc0682dc4e87192daeb0e9e64da36b35e672b56156e0cc867
MD5 4a350fd15452b78f46986a1c1b45f33c
BLAKE2b-256 403c6923a05cb67a7f8118ba1521804d2fd473ed82f3df22a10dde8eaaa0bbc0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cab8a8bef603f0fced7b245f7c4f77826602fd94f7c54ccb09b36b177dde246d
MD5 c7c30f22b9ec726999d292189e6466d6
BLAKE2b-256 f5bfa5e547e7277fe6fa1dd69656f353570f36ea514c7e4ee8f249566424b9f3

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_learn-1.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.10

File hashes

Hashes for scikit_learn-1.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c10cd62443a9968c71fb9f1c7844f3f28189666f789d5a204dbad7463169b172
MD5 77addc904ecabe5c6f5f9a3778ee71a8
BLAKE2b-256 02ac75beab660c478ea3e4ce509c66071f9b20f7a4aff6af3ab132c32d8456b0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff60f63f1584d7daebfc93e69addd39760de49ae4325db5638c324cfde41c6c7
MD5 b853076ebc023ed6bbbf44ec153dd941
BLAKE2b-256 b50bc1200eec55536f2934f5216efd6607007535ff340117cbd7e97cdf45c30d

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 292525a17645bff043d33d427e93db8cec8d66b5022ead7971ce8bfdf7553feb
MD5 d2c4904352ee1ba64b0cf0614ce16f79
BLAKE2b-256 0d6d85271c8bcb4e2b20213bb039a86baeffc560f2645ae7a3ae66d55bde88d3

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 18aabbb26cbc1cf52583c1f1ecf6b5ff540d334f173e23122db43f97adbe0b2b
MD5 7bc2fb55e728461c3ca482e4585af0d5
BLAKE2b-256 692fab61eef4d312d9a6dee9baa527e9e67bc15b751b89dece74a95042919557

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 502865e025d3222530e350783a59cc37538effde64767721d830ceaae8bb3d42
MD5 a199e26fc75ce239b1ef77038a445be8
BLAKE2b-256 60da5105533fc8888cabbb6351ece69487794a2c611060747e99dd9ddcef6bb6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page