Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • SciPy (>= 1.3.2)

  • joblib (>= 1.0.0)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 3.1.2). For running the examples Matplotlib >= 3.1.2 is required. A few examples require scikit-image >= 0.16.2, a few examples require pandas >= 1.0.5, some examples require seaborn >= 0.9.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.0.1 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.1.3.tar.gz (7.0 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.1.3-cp311-cp311-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_learn-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (32.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.3-cp311-cp311-macosx_12_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scikit_learn-1.1.3-cp311-cp311-macosx_10_9_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_learn-1.1.3-cp310-cp310-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.3-cp310-cp310-macosx_12_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.1.3-cp310-cp310-macosx_10_9_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.1.3-cp39-cp39-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.3-cp39-cp39-macosx_12_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scikit_learn-1.1.3-cp38-cp38-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_learn-1.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.1.3-cp38-cp38-macosx_12_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scikit_learn-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scikit-learn-1.1.3.tar.gz.

File metadata

  • Download URL: scikit-learn-1.1.3.tar.gz
  • Upload date:
  • Size: 7.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.15

File hashes

Hashes for scikit-learn-1.1.3.tar.gz
Algorithm Hash digest
SHA256 bef51978a51ec19977700fe7b86aecea49c825884f3811756b74a3b152bb4e35
MD5 70a800d6184206e33edc681131226063
BLAKE2b-256 38bc319f789ce0988d9bf1379d6e40498dc119b30bec133bf76cd82ca549b69a

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fd3ee69d36d42a7dcbb17e355a5653af5fd241a7dfd9133080b3dde8d9e2aafb
MD5 71df65dd7a0aa14237886bc592c9f5b4
BLAKE2b-256 180e930026d0554075f212c974773aab729ad370d0f611eddaa0d8bbaa8eaa33

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 250da993701da88bf475e7c5746abf1285ea0ae47e4d0917cd13afd6600bb162
MD5 77018b23971c1127731f7a2f5a0931f4
BLAKE2b-256 53d84eb42e5a2f7bb0e9d376de7013235694f811af70b6bab66a92f30e4bc8be

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d1c1394e38a3319ace620381f6f23cc807d8780e9915c152449a86fc8f1db21
MD5 4416432158c7ed83ca8754ffaa4a1538
BLAKE2b-256 65d2c9beff50f6adf2a8763e30d1ea1347b979caa4c5a8fe9d5a9d56f9a9173d

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2ee2c649f2231b68511aabb0dc827edd8936aad682acc6263c34aed11bc95dac
MD5 a77f15d2e53531c04d1bfa952eb68370
BLAKE2b-256 915414e64c540d554d29e40239850bc656e2d403870c6fb388319034eb878f0a

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5699cded6c0685426433c7e5afe0fecad80ec831ec7fa264940e50c796775cc5
MD5 2479557432834acbe79790d16ca6d659
BLAKE2b-256 770d7555c9b3cd8dd1796173f57dd9e63f5a6acbdcf73ac2c6199017910b3991

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 30e27721adc308e8fd9f419f43068e43490005f911edf4476a9e585059fa8a83
MD5 efc6f7d2e494c369fac865bcb00710d2
BLAKE2b-256 fe282b78c8efceeb07e73cef24af458dd8241cc6c4b39abc7bf375ba38b07d28

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 701181792a28c82fecae12adb5d15d0ecf57bffab7cf4bdbb52c7b3fd428d540
MD5 e096aa39139d44464ba5dd02e834910b
BLAKE2b-256 23b65d339516e3fbb6cde8ad87e85d9f17a3270c9e508c860785f0b6239ea33a

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da5a2e95fef9805b1750e4abda4e834bf8835d26fc709a391543b53feee7bd0e
MD5 7997b13ea8faef5e5165551a7118e145
BLAKE2b-256 23b978099838802cca1c8bfd985212c2df098a062e9b1df70845764e65685e3e

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ee47f68d973cee7009f06edb956f2f5588a0f230f24a2a70175fd0ecf36e2653
MD5 646585997019399bce0f614dc50a3d9e
BLAKE2b-256 9a3be7aca9745952d3abe278fcf68ed8106ea98b8e049f05a4047a3b5a6cb706

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e9dd76c7274055d1acf4526b8efb16a3531c26dcda714a0c16da99bf9d41900
MD5 292a60fe7d4d0a619e7f2b1be2da876a
BLAKE2b-256 22170b7adb6df00a30bc2c4a9e30e7f1c0c611035e2a5e22721b1bec0c2a5ffc

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4d3a19166d4e1cdfcab975c68f471e046ce01e74c42a9a33fa89a14c2fcedf60
MD5 1bf5c58b5a8a46699f04639b97d05e79
BLAKE2b-256 c3ddfab87d80ccd9636c1bca567a6e23ad14bd3cfbc5855db3797c326d895957

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5d4231af7199531e77da1b78a4cc6b3d960a00b1ec672578ac818aae2b9c35d
MD5 064a6ee7eddfa7d981c0064a100b19fb
BLAKE2b-256 fa7478f4c6ae97ccd9cd9bac5ac8999af7c1f21a438edca5c5b381394568831e

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 23fb9e74b813cc2528b5167d82ed08950b11106ccf50297161875e45152fb311
MD5 8135efe344c3febd2ed20510b6f19985
BLAKE2b-256 132bb70294841c5a0252ab9c80b93ef17c97bd67e9261ba743e0b09cc5a53ab1

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 28b2bd6a1419acd522ff45d282c8ba23dbccb5338802ab0ee12baa4ade0aba4c
MD5 e0b2e150be66455aaa8421876fe70a79
BLAKE2b-256 f040ad11af9eee4e195660e76354511d8cb6f1a4ffa1d1189ce8408b65052d14

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6785b8a3093329bf90ac01801be5525551728ae73edb11baa175df660820add4
MD5 acc5e49b08bb2a82909914e8d12256a4
BLAKE2b-256 523b52dc84d8ee81a13e43c9ec98d3b5b88ba8ada8dfd12430caaaad2187ac04

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f4931f2a6c06e02c6c17a05f8ae397e2545965bc7a0a6cb38c8cd7d4fba8624d
MD5 684f162ce475301493151262aaf589b9
BLAKE2b-256 674155197045c3ea6b443977eb0222a98b4f5276a3aae3856baa57f39fdfea8e

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38814f66285318f2e241305cca545eaa9b4126c65aa5dd78c69371f235f78e2b
MD5 99abae539226eb6fd26bcd2170c09a58
BLAKE2b-256 f990b76a42bb6e97d3296787c8926e7610b0485918a2efa219a9614eb1a068b2

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cd55c6fbef7608dbce1f22baf289dfcc6eb323247daa3c3542f73d389c724786
MD5 e27e6aba77d51ab7fcb418f475f6de51
BLAKE2b-256 0bb2317c4f9001567057cd197eb56a4baeb3567da86509c890d2ed9edac5ffa8

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 748f2bd632d6993e8918d43f1a26c380aeda4e122a88840d4c3a9af99d4239fe
MD5 00f3e2fb057e9d547abbae785ca03b8c
BLAKE2b-256 9de2795ca73cb4c198ba409c214aef30e333a4a4a0a407cb3de42e587873880a

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5644663987ee221f5d1f47a593271b966c271c236fe05634e6bdc06041b5a2b
MD5 6f7e884786a8540046be97d556b72fb3
BLAKE2b-256 629ae2ada8dd61783d6eddbe159f4714e8effe46121923d93ba3c1e9249f423c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page