Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure CirrusCI Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • SciPy (>= 1.5.0)

  • joblib (>= 1.1.1)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 3.1.3). For running the examples Matplotlib >= 3.1.3 is required. A few examples require scikit-image >= 0.16.2, a few examples require pandas >= 1.0.5, some examples require seaborn >= 0.9.0 and plotly >= 5.14.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 7.1.2 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.3.0.tar.gz (7.5 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.3.0-cp311-cp311-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_learn-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.0-cp311-cp311-macosx_12_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scikit_learn-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_learn-1.3.0-cp310-cp310-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.0-cp310-cp310-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.3.0-cp39-cp39-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.0-cp39-cp39-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scikit_learn-1.3.0-cp38-cp38-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.0-cp38-cp38-macosx_12_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scikit_learn-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scikit-learn-1.3.0.tar.gz.

File metadata

  • Download URL: scikit-learn-1.3.0.tar.gz
  • Upload date:
  • Size: 7.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for scikit-learn-1.3.0.tar.gz
Algorithm Hash digest
SHA256 8be549886f5eda46436b6e555b0e4873b4f10aa21c07df45c4bc1735afbccd7a
MD5 fabc44827a51bad593bd3af6aba75e40
BLAKE2b-256 72cd4761675df1b3dd93072c89697278f3ed3dc004a60c034cd2603c43ff64b5

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 151ac2bf65ccf363664a689b8beafc9e6aae36263db114b4ca06fbbbf827444a
MD5 2b8e38c62b02bf504796bd3678465740
BLAKE2b-256 7785bff3a1e818ec6aa3dd466ff4f4b0a727db9fdb41f2e849747ad902ddbe95

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d953531f5d9f00c90c34fa3b7d7cfb43ecff4c605dac9e4255a20b114a27369
MD5 ff2f0ee6325da9b4bc2952a1c4589d22
BLAKE2b-256 1fad9799aabeabcb9a293c87b6f96cc78655b8abc7d35560cd99007093b5d445

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee04835fb016e8062ee9fe9074aef9b82e430504e420bff51e3e5fffe72750ca
MD5 56d99ad16ce16cdc950d8f3db8425884
BLAKE2b-256 e1c9611576b79150f3adbf2b604c57daa45b5efa225bb71e337d2d8853f6fdfd

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 850a00b559e636b23901aabbe79b73dc604b4e4248ba9e2d6e72f95063765603
MD5 36ecb49e4ee08c9276899023f264f6c3
BLAKE2b-256 183660b58b6199547b7b46be03e05508d053162fbce146639bfc65609fa49b23

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 79970a6d759eb00a62266a31e2637d07d2d28446fca8079cf9afa7c07b0427f8
MD5 9116e8dca396ecc1b56eb95edd328adb
BLAKE2b-256 e8dd41bc4dfa519bc1a0617b68496120c472f1a1a5db264132d1530c43f059a8

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 552fd1b6ee22900cf1780d7386a554bb96949e9a359999177cf30211e6b20df6
MD5 b6b57da9c020572d562243b9e80bd377
BLAKE2b-256 96cfa714a655266229b51eb2bda117f15275f12457887f165f3c1cc58ab502f1

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae80c08834a473d08a204d966982a62e11c976228d306a2648c575e3ead12111
MD5 d3f21c4c75ad440d131c13310498d6f2
BLAKE2b-256 5ce9ee572691a3fb05555bcde41826faad29ae4bc1fb07982e7f53d54a176879

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c7e28d8fa47a0b30ae1bd7a079519dd852764e31708a7804da6cb6f8b36e3630
MD5 bba86429a0e57500055b449d98cb8d43
BLAKE2b-256 a061970fbef9dcb224023f2c2ddf19b13e5a96b5185705c4a075108bbe7fa7f9

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 436aaaae2c916ad16631142488e4c82f4296af2404f480e031d866863425d2a2
MD5 ccb5246bfaf0cd38ffd2b2a7a741bb5a
BLAKE2b-256 e15f0b5b11fd766b674b0eb887e15006175503f23c230ced2a22fb186262e1e5

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 981287869e576d42c682cf7ca96af0c6ac544ed9316328fd0d9292795c742cf5
MD5 cff00d2ff8daac364239df2e66f2d858
BLAKE2b-256 35d383a3e7144da980604a20e27b6f1e8a2164ab324310d69a82f2cff1da6326

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1d54fb9e6038284548072df22fd34777e434153f7ffac72c8596f2d6987110dd
MD5 ec11a453776e8d1cf36f3d0a56447c24
BLAKE2b-256 2d303afb8bcb785653254eb646ff2680ec4d637b40b06f4b046aca17b5e086b0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7617164951c422747e7c32be4afa15d75ad8044f42e7d70d3e2e0429a50e6718
MD5 7ef25ff4b236862a0e21256e2599fba8
BLAKE2b-256 d461966d3238f6cbcbb13350d31bd0accfc5efdf9e349cd2a42d9761b8b67a18

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0e8102d5036e28d08ab47166b48c8d5e5810704daecf3a476a4282d562be9a28
MD5 6a5ad880049fb8db07d18a6e40455dea
BLAKE2b-256 3c642740fb23c8cd410df3488a12376d131a8060621d9088ca0bab56c61087ff

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ded35e810438a527e17623ac6deae3b360134345b7c598175ab7741720d7ffa7
MD5 c9d4adf2bad68a93ae2da90ae88c5c49
BLAKE2b-256 63876cd5450f0385966bf2a5b865a2043cf68c2a41676193afdbccb40f8719dc

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 998d38fcec96584deee1e79cd127469b3ad6fefd1ea6c2dfc54e8db367eb396b
MD5 920741be87e80dd19ea00135fbc4645a
BLAKE2b-256 9644330d6b84580fe5fd64220c96eba31c0c3e19677c388667eaf37545b0218b

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3a11936adbc379a6061ea32fa03338d4ca7248d86dd507c81e13af428a5bc1db
MD5 40aa5e40cd2e760e54336945f1b2a2bb
BLAKE2b-256 5f08c66e99f06fb73f727c870172f0962c103262ac68839cc05234709b7b45c2

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd6e2d7389542eae01077a1ee0318c4fec20c66c957f45c7aac0c6eb0fe3c612
MD5 4339e26a9ae8c1dea14e6fedac65e47d
BLAKE2b-256 bf15d1b649fc7685d11b806b4546a5438191fb2ad761de70da95ff676189dcec

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c470f53cea065ff3d588050955c492793bb50c19a92923490d18fcb637f6383a
MD5 a26f43abedd7c33ba69ec5528a4ce9e5
BLAKE2b-256 f0dc898e462497fcbaf8ab2e744c58acf463f74e542f71956fc364bf156c262c

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9877af9c6d1b15486e18a94101b742e9d0d2f343d35a634e337411ddb57783f3
MD5 2708e2f40e6d7d1caf421195adf60edd
BLAKE2b-256 a8270e2a1d7b30bb8ef2042630ff92e17a1d4edb1e221f8193695eb85ca8ecdc

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a885a9edc9c0a341cab27ec4f8a6c58b35f3d449c9d2503a6fd23e06bbd4f6a
MD5 a07ca6202c991f707926fead18f32af0
BLAKE2b-256 33cb0e41fad5b30fd66925e47952ddc720d078bdfd8397584a4873ec1cf590ca

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page