Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure CirrusCI Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.8)

  • NumPy (>= 1.17.3)

  • SciPy (>= 1.5.0)

  • joblib (>= 1.1.1)

  • threadpoolctl (>= 2.0.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with “Display”) require Matplotlib (>= 3.1.3). For running the examples Matplotlib >= 3.1.3 is required. A few examples require scikit-image >= 0.16.2, a few examples require pandas >= 1.0.5, some examples require seaborn >= 0.9.0 and plotly >= 5.14.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 7.1.2 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-1.3.1.tar.gz (7.5 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.3.1-cp312-cp312-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_learn-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.1-cp312-cp312-macosx_12_0_arm64.whl (9.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scikit_learn-1.3.1-cp312-cp312-macosx_10_9_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scikit_learn-1.3.1-cp311-cp311-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_learn-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.1-cp311-cp311-macosx_12_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scikit_learn-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_learn-1.3.1-cp310-cp310-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.1-cp310-cp310-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.3.1-cp39-cp39-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.1-cp39-cp39-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scikit_learn-1.3.1-cp38-cp38-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_learn-1.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_learn-1.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scikit_learn-1.3.1-cp38-cp38-macosx_12_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scikit_learn-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scikit-learn-1.3.1.tar.gz.

File metadata

  • Download URL: scikit-learn-1.3.1.tar.gz
  • Upload date:
  • Size: 7.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for scikit-learn-1.3.1.tar.gz
Algorithm Hash digest
SHA256 1a231cced3ee3fa04756b4a7ab532dc9417acd581a330adff5f2c01ac2831fcf
MD5 7f53fc2b70a4c1df207e1efc9ddbae33
BLAKE2b-256 4b494b3e90399f49e875a1a6a0e72bb99d7e8fe808fcfe0a6a12b43a77e7d64d

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0e1aa8f206d0de814b81b41d60c1ce31f7f2c7354597af38fae46d9c47c45122
MD5 2b98e2aaab9cc0b584978d3671d28b9f
BLAKE2b-256 37a908538c29f188b1c37eb6e115a5046c6d17457e1a7b8ea748edd3017ddd6c

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c275a06c5190c5ce00af0acbb61c06374087949f643ef32d355ece12c4db043
MD5 076dc973c2a3bb7d39830593979b64d7
BLAKE2b-256 73faba7ae5f487a0df51bf3687d1b873456cdb1a3f565d31074f2d306f0be3f7

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d2cd3634695ad192bf71645702b3df498bd1e246fc2d529effdb45a06ab028b4
MD5 c66fe49afeeb399740db7e69c9f1d0d6
BLAKE2b-256 c56f88ebc14f6fc61afee4e21f59a30af66043551453cec095ec6e98b34e077c

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9147a3a4df4d401e618713880be023e36109c85d8569b3bf5377e6cd3fecdeac
MD5 2fbb9b21f19db7f466a447eaa0425905
BLAKE2b-256 3f05acb6e525ac40c2238aaeee89567a579f93b769941dc7ff2ac9af17390b23

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef540e09873e31569bc8b02c8a9f745ee04d8e1263255a15c9969f6f5caa627f
MD5 dba9e81485f453a8dcb8b9984b736c0c
BLAKE2b-256 3a064e5e9596a6626e8210a9069e8134aa8696060a691f506c17e11759bae6bb

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c413c2c850241998168bbb3bd1bb59ff03b1195a53864f0b80ab092071af6028
MD5 ec73fcfec3ba08c22b85fa11a6ff4d1b
BLAKE2b-256 f17d2e562207176a5dcdad513085670674bb11ffaf37e1393eacb6d7fb502481

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6448c37741145b241eeac617028ba6ec2119e1339b1385c9720dae31367f2be
MD5 af2bd26246d23638e5a58d781e7e0959
BLAKE2b-256 8f875969092159207f583481ad80a03f09e2d4af1ebd197f4530ca4e906c947e

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f66eddfda9d45dd6cadcd706b65669ce1df84b8549875691b1f403730bdef217
MD5 e3dc0a30a83fcb5bf3382ddd6523b5f6
BLAKE2b-256 4144b9c82b37357524378876e2abb21a10fccc9b2a8befd61e39576c99ab77fa

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 58b0c2490eff8355dc26e884487bf8edaccf2ba48d09b194fb2f3a026dd64f9d
MD5 e98ffc5e9aecf41b3112793bd236c10f
BLAKE2b-256 db0d1f6d2cd52c886707b00ddb7ed2504cbf10903a60a7bebcd71f0f77d53505

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14e8775eba072ab10866a7e0596bc9906873e22c4c370a651223372eb62de180
MD5 c3f54d5ee9fb93e02e2fa8b48f1907d9
BLAKE2b-256 f2b4c273b046e0f14e76ec33fdce82d70ddce1c796aaabadf436b3b8bf01ffb5

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4d379f2b34096105a96bd857b88601dffe7389bd55750f6f29aaa37bc6272eb5
MD5 2904615097ba61cf3237bece57d4a697
BLAKE2b-256 59ed548f6f686845d386a727a51a3daa411d95fc599649a2d54705f6773ac259

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d8dee8c1f40eeba49a85fe378bdf70a07bb64aba1a08fda1e0f48d27edfc3e6
MD5 c3b24c1628014fdd26df8b615f1b1d76
BLAKE2b-256 7daf03d3a7d5719d00486c296ddd876e6f07a681bc4e079cb45348d2f261a748

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a7135a03af71138669f19bc96e7d0cc8081aed4b3565cc3b131135d65fc642ba
MD5 47a7820b48a5dce35cbb0ae93f28289f
BLAKE2b-256 cc0261f0fda2c2c2a4464b805de2c5b99a518832f8bdc780b1fe97691c96a406

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6bb9490fdb8e7e00f1354621689187bef3cab289c9b869688f805bf724434755
MD5 2e5fca834241e9d37daf81409ff72526
BLAKE2b-256 68435f371523089871c0190800d64a9483f86ae68cd8360a86f529596b3a0496

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3153612ff8d36fa4e35ef8b897167119213698ea78f3fd130b4068e6f8d2da5a
MD5 308905b056e0121a1f3a4b3cdf95c9fb
BLAKE2b-256 741701347a4e2298edd6d152b79d4d042f902a618ccaf4c070f0a61999a26156

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 66f7bb1fec37d65f4ef85953e1df5d3c98a0f0141d394dcdaead5a6de9170347
MD5 ad184b2bce75670fbbd73c187ce34baf
BLAKE2b-256 1b7c66d34dc231a309cc3a7f3eeb848319be3b616fd2918db302aaef727eff4a

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d993fb70a1d78c9798b8f2f28705bfbfcd546b661f9e2e67aa85f81052b9c53
MD5 9431f2162ea2ddbcc93087372c01cd92
BLAKE2b-256 afad329a88013936e4372181c0e275c19aa6130b0835876726944b811af5a856

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8454d57a22d856f1fbf3091bd86f9ebd4bff89088819886dc0c72f47a6c30652
MD5 2fa0e8cdcebf0e5e926b72c5250004b3
BLAKE2b-256 23bbfe8ec91272d21d0ffec4239204b09c7932a7306709faa15f086707c5d16d

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 845f81c7ceb4ea6bac64ab1c9f2ce8bef0a84d0f21f3bece2126adcc213dfecd
MD5 116c46f582cfac627d35927f83321dfc
BLAKE2b-256 88a3023bf03411b8d89954d028dd56dc97f5fa04f18b4cb2acf4315dfb3dfa15

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ccbbedae99325628c1d1cbe3916b7ef58a1ce949672d8d39c8b190e10219fd32
MD5 278c55a0083dcdad1e437eb21792ede5
BLAKE2b-256 a26bd96b05c50d84f8ab330f6615b021c9d348f1d783b9291cfc5500ada9de88

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1ec668ce003a5b3d12d020d2cde0abd64b262ac5f098b5c84cf9657deb9996a8
MD5 c0387fa6ddacfe989e8d29ea183f7db4
BLAKE2b-256 8e451d6c34f0a4db820968e35ca872e2a553f4d1015e7437f04128496c046034

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ce9233cdf0cdcf0858a5849d306490bf6de71fa7603a3835124e386e62f2311
MD5 c2b0f18d8a1f3df8e16626f493ee970e
BLAKE2b-256 914e752fd6e0b6b828a9cd815941fb70723eaef5d0f4efd8b9b0eee7864b3511

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a15d964d9eb181c79c190d3dbc2fff7338786bf017e9039571418a1d53dab236
MD5 7bd1563fa69e420240bc3c0dda55d579
BLAKE2b-256 83f4cbbee6c6e4e9342e1b6ed6eb7e980b75e65f03b790b00998602d8407ecaa

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a683394bc3f80b7c312c27f9b14ebea7766b1f0a34faf1a2e9158d80e860ec26
MD5 4c1f5dddfa370b735e6cb6e0f8487ac8
BLAKE2b-256 3b8e510fca8967185df0099c006663702c0c17a4c58f6d3b6eb86c20426141c0

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 52b77cc08bd555969ec5150788ed50276f5ef83abb72e6f469c5b91a0009bbca
MD5 3ea86a6d77d8c17a2acf0815d09d9b2a
BLAKE2b-256 17b00de229ee8bbb3ff011bb711f0dce0ee9bd39145becaaf2b26645655e7c10

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page