Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure CirrusCI Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.9)

  • NumPy (>= 1.19.5)

  • SciPy (>= 1.6.0)

  • joblib (>= 1.2.0)

  • threadpoolctl (>= 3.1.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with Display) require Matplotlib (>= 3.3.4). For running the examples Matplotlib >= 3.3.4 is required. A few examples require scikit-image >= 0.17.2, a few examples require pandas >= 1.1.5, some examples require seaborn >= 0.9.0 and plotly >= 5.14.0.

User installation

If you already have a working installation of NumPy and SciPy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 7.1.2 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_learn-1.5.1.tar.gz (7.0 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.5.1-cp312-cp312-win_amd64.whl (10.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.1-cp312-cp312-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scikit_learn-1.5.1-cp312-cp312-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scikit_learn-1.5.1-cp311-cp311-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.1-cp311-cp311-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scikit_learn-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_learn-1.5.1-cp310-cp310-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.1-cp310-cp310-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.5.1-cp39-cp39-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.1-cp39-cp39-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scikit_learn-1.5.1.tar.gz.

File metadata

  • Download URL: scikit_learn-1.5.1.tar.gz
  • Upload date:
  • Size: 7.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for scikit_learn-1.5.1.tar.gz
Algorithm Hash digest
SHA256 0ea5d40c0e3951df445721927448755d3fe1d80833b0b7308ebff5d2a45e6414
MD5 a33c1a382b73834868cbecf89011ed1d
BLAKE2b-256 92722961b9874a9ddf2b0f95f329d4e67f67c3301c1d88ba5e239ff25661bb85

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 da3f404e9e284d2b0a157e1b56b6566a34eb2798205cba35a211df3296ab7a74
MD5 56d2de8e66daa188f07c15d33503de80
BLAKE2b-256 cbbedec2a8d31d133034a8ec51ae68ac564ec9bde1c78a64551f1438c3690b9e

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97625f217c5c0c5d0505fa2af28ae424bd37949bb2f16ace3ff5f2f81fb4498b
MD5 37fe8300fdc084f8dcbfa47721e3c6ad
BLAKE2b-256 8a5d047cde25131eef3a38d03317fa7d25d6f60ce6e8ccfd24ac88b3e309fc00

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 508907e5f81390e16d754e8815f7497e52139162fd69c4fdbd2dfa5d6cc88915
MD5 7da0048ef692870620a4f27139cbd8df
BLAKE2b-256 d3a915774b178bcd1cde1c470adbdb554e1504dce7c302e02ff736c90d65e014

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0828673c5b520e879f2af6a9e99eee0eefea69a2188be1ca68a6121b809055c1
MD5 eccc7f9883f3f85188b971efe8308795
BLAKE2b-256 d52c734fc9269bdb6768905ac41b82d75264b26925b1e462f4ebf45fe4f17646

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5944ce1faada31c55fb2ba20a5346b88e36811aab504ccafb9f0339e9f780395
MD5 b5d7b36922cc37fdc08950f556bee3e7
BLAKE2b-256 b18dcf392a56e24627093a467642c8b9263052372131359b570df29aaf4811ab

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9a07f90846313a7639af6a019d849ff72baadfa4c74c778821ae0fad07b7275b
MD5 7d35c9ec3685fc5da4b537a361b672ee
BLAKE2b-256 5d550403bf2031250ac982c8053397889fbc5a3a2b3798b913dae4f51c3af6a4

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 689b6f74b2c880276e365fe84fe4f1befd6a774f016339c65655eaff12e10cbf
MD5 5fc42b8b953b70c85c12d6bee526076d
BLAKE2b-256 3263ed228892adad313aab0d0f9261241e7bf1efe36730a2788ad424bcad00ca

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 909144d50f367a513cee6090873ae582dba019cb3fca063b38054fa42704c3a4
MD5 51dc7c9cbb2b2a29bc8ac376cb10cb64
BLAKE2b-256 c1f8fd3fa610cac686952d8c78b8b44cf5263c6c03885bd8e5d5819c684b44e8

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b5e865e9bd59396220de49cb4a57b17016256637c61b4c5cc81aaf16bc123bbe
MD5 72a8114611cbe42c63177de54e2fa8e8
BLAKE2b-256 7dd7fb80c63062b60b1fa5dcb2d4dd3a4e83bd8c68cdc83cf6ff8c016228f184

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 154297ee43c0b83af12464adeab378dee2d0a700ccd03979e2b821e7dd7cc1c2
MD5 93feaa011e500f88855a4b49f528910b
BLAKE2b-256 0386ab9f95e338c5ef5b4e79463ee91e55aae553213835e59bf038bc0cc21bf8

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 10e49170691514a94bb2e03787aa921b82dbc507a4ea1f20fd95557862c98dc1
MD5 78ad07af739761917fe5f3c504fcfa64
BLAKE2b-256 f113de29b945fb28fc0c24159d3a83f1250c5232c1c9abac12434c7c3447e9cc

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 161808750c267b77b4a9603cf9c93579c7a74ba8486b1336034c2f1579546d21
MD5 3fee7a97a897ca9299dedc35f6c74f7c
BLAKE2b-256 f2606c589c91e474721efdcec82ea9cc5c743359e52637e46c364ee5236666ef

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ff4ba34c2abff5ec59c803ed1d97d61b036f659a17f55be102679e88f926fac
MD5 a54e1b92f99980d073085bc60ec82d94
BLAKE2b-256 5cc6e362563cc7dfe37e4699cbf2b2d22c2854be227c254976de1c4854fc6e84

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f5b213bc29cc30a89a3130393b0e39c847a15d769d6e59539cd86b75d276b1a7
MD5 b7cd7d07315985d089b15584c1182c62
BLAKE2b-256 1fc6ba8e5691acca616adc8f0d6f8f5e79d55b927530aa404ee712b077acf0cf

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 781586c414f8cc58e71da4f3d7af311e0505a683e112f2f62919e3019abd3745
MD5 64d23975585a49f5fa73d92207c0b6e4
BLAKE2b-256 f859d8ea8c05e61d2afa988dfcfe47526595b531e94d23babf58d2e00a35f646

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5f57428de0c900a98389c4a433d4a3cf89de979b3aa24d1c1d251802aa15e44d
MD5 52dd5604c9a01edb811a97a318182c1d
BLAKE2b-256 a8ed941b210029c1051233b082a19c36b930f56dda34a8a5227dbbd1bc08f7eb

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bd8d3a19d4bd6dc5a7d4f358c8c3a60934dc058f363c34c0ac1e9e12a31421d
MD5 7e426c45ce5708756a985c1cf337875a
BLAKE2b-256 12f8d6bc56d20c60b2b66e005dfed16fdf8c46dbe559d40896d06c448a65f134

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b59e3e62d2be870e5c74af4e793293753565c7383ae82943b83383fdcf5cc5c1
MD5 2e524c091be6b53c5f1c425d09eb75cf
BLAKE2b-256 00848d2174ef802da1b9eedc8691883ed08a16318e2189fd5377e5bc2d404c0b

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7b073a27797a283187a4ef4ee149959defc350b46cbf63a84d8514fe16b69855
MD5 556348646abe9e19cdc112d5de1e5b55
BLAKE2b-256 183eb46f298305c243395b88f0f201c32946bdd448e9583315255d87706c3170

See more details on using hashes here.

Provenance

File details

Details for the file scikit_learn-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88e0672c7ac21eb149d409c74cc29f1d611d5158175846e7a9c2427bd12b3956
MD5 c8ffbe053a24fa1626643e127c78ab47
BLAKE2b-256 cb9fd2837e96be692f99b92a3cb192e8f46501f7ddab6c93a07a9b206f7b3297

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page