Skip to main content

Sequential model-based optimization toolbox.

Project description

Logo

pypi conda CI Status binder codecov Zenodo DOI

Scikit-Optimize

Scikit-Optimize, or skopt, is a simple and efficient library for optimizing (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts.

The library is built on top of NumPy, SciPy, and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based optimization algorithms look at scipy.optimize here.

Approximated objective

Approximated objective function after 50 iterations of gp_minimize. Plot made using skopt.plots.plot_objective.

Maintaining the codebase

This repo is a copy of the original repositoy at https://github.com/scikit-optimize/scikit-optimize/. As the original repo is now in read-only mode, i decided to continue the development on it on my own. I still have credentials for pypi, so I will publish new releases at https://pypi-hypernode.com/project/scikit-optimize/. I did my best to include all open PR since 2021 in the new release of scikit-optimize 0.10.

https://scikit-optimize.github.io/ has been moved to http://scikit-optimize.readthedocs.io/.

Install

scikit-optimize requires

  • Python >= 3.8

  • NumPy (>= 1.20.3)

  • SciPy (>= 0.19.1)

  • joblib (>= 0.11)

  • scikit-learn >= 1.0.0

  • matplotlib >= 2.0.0

You can install the latest release with:

pip install scikit-optimize

This installs the essentials. To install plotting functionality, you can instead do:

pip install 'scikit-optimize[plots]'

This will additionally install Matplotlib.

If you’re using Anaconda platform, there is a conda-forge package of scikit-optimize:

conda install -c conda-forge scikit-optimize

Using conda-forge is probably the easiest way to install scikit-optimize on Windows.

Getting started

Find the minimum of the noisy function f(x) over the range -2 < x < 2 with skopt:

import numpy as np
from skopt import gp_minimize

def f(x):
    return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +
            np.random.randn() * 0.1)

res = gp_minimize(f, [(-2.0, 2.0)])

For more control over the optimization loop you can use the skopt.Optimizer class:

from skopt import Optimizer

opt = Optimizer([(-2.0, 2.0)])

for i in range(20):
    suggested = opt.ask()
    y = f(suggested)
    opt.tell(suggested, y)
    print('iteration:', i, suggested, y)

Read our introduction to bayesian optimization and the other examples.

Development

The library is still experimental and under development. Checkout the next milestone for the plans for the next release or look at some easy issues to get started contributing.

The development version can be installed through:

git clone https://github.com/holgern/scikit-optimize.git
cd scikit-optimize
pip install -e .

Run all tests by executing pytest in the top level directory.

To only run the subset of tests with short run time, you can use pytest -m 'fast_test' (pytest -m 'slow_test' is also possible). To exclude all slow running tests try pytest -m 'not slow_test'.

This is implemented using pytest attributes. If a tests runs longer than 1 second, it is marked as slow, else as fast.

All contributors are welcome!

Pre-commit-config

Installation

pip install pre-commit

Using homebrew

brew install pre-commit

pre-commit --version
pre-commit 2.10.0

Install the git hook scripts

pre-commit install

Run against all the files

pre-commit run --all-files
pre-commit run --show-diff-on-failure --color=always --all-files

Update package rev in pre-commit yaml

pre-commit autoupdate
pre-commit run --show-diff-on-failure --color=always --all-files

Making a Release

The release procedure is almost completely automated. By tagging a new release, CI will build all required packages and push them to PyPI. To make a release, create a new issue and work through the following checklist:

Before making a release, we usually create a release candidate. If the next release is v0.X, then the release candidate should be tagged v0.Xrc1. Mark the release candidate as a “pre-release” on GitHub when you tag it.

Made possible by

The scikit-optimize project was made possible with the support of

Wild Tree Tech NYU Center for Data Science NSF Northrop Grumman

If your employer allows you to work on scikit-optimize during the day and would like recognition, feel free to add them to the “Made possible by” list.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_optimize-0.10.2.tar.gz (86.2 kB view details)

Uploaded Source

Built Distribution

scikit_optimize-0.10.2-py2.py3-none-any.whl (107.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file scikit_optimize-0.10.2.tar.gz.

File metadata

  • Download URL: scikit_optimize-0.10.2.tar.gz
  • Upload date:
  • Size: 86.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for scikit_optimize-0.10.2.tar.gz
Algorithm Hash digest
SHA256 00a3d91bf9015e292b6e7aaefe7e6cb95e8d25ce19adafd2cd88849e1a0b0da0
MD5 b1f0f2000b6a98b3365f0ffa4547627f
BLAKE2b-256 b3951b433b9eb9eb653fb97fd525552fd027886e3812d7d20d843994263340aa

See more details on using hashes here.

File details

Details for the file scikit_optimize-0.10.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_optimize-0.10.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 45bc7e879b086133984721f2f6735a86c085073f6c481c2ec665b5c67b44d723
MD5 421085da4a979e4fec5e8990c86f0450
BLAKE2b-256 65cd15c9ebea645cc9860aa71fe0474f4be981f10ed8e19e1fb0ef1027d4966e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page