Skip to main content

Sequential model-based optimization toolbox.

Project description

Logo

pypi conda Travis Status CircleCI Status binder gitter Zenodo DOI

Scikit-Optimize

Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts.

The library is built on top of NumPy, SciPy and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based optimization algorithms look at scipy.optimize here.

Approximated objective

Approximated objective function after 50 iterations of gp_minimize. Plot made using skopt.plots.plot_objective.

Install

The latest released version of scikit-optimize is v0.7.2, which you can install with:

pip install scikit-optimize

This installs an essential version of scikit-optimize. To install scikit-optimize with plotting functionality, you can instead do:

pip install 'scikit-optimize[plots]'

This will install matplotlib along with scikit-optimize.

In addition there is a conda-forge package of scikit-optimize:

conda install -c conda-forge scikit-optimize

Using conda-forge is probably the easiest way to install scikit-optimize on Windows.

Getting started

Find the minimum of the noisy function f(x) over the range -2 < x < 2 with skopt:

import numpy as np
from skopt import gp_minimize

def f(x):
    return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +
            np.random.randn() * 0.1)

res = gp_minimize(f, [(-2.0, 2.0)])

For more control over the optimization loop you can use the skopt.Optimizer class:

from skopt import Optimizer

opt = Optimizer([(-2.0, 2.0)])

for i in range(20):
    suggested = opt.ask()
    y = f(suggested)
    opt.tell(suggested, y)
    print('iteration:', i, suggested, y)

Read our introduction to bayesian optimization and the other examples.

Development

The library is still experimental and under heavy development. Checkout the next milestone for the plans for the next release or look at some easy issues to get started contributing.

The development version can be installed through:

git clone https://github.com/scikit-optimize/scikit-optimize.git
cd scikit-optimize
pip install -e.

Run all tests by executing pytest in the top level directory.

To only run the subset of tests with short run time, you can use pytest -m 'fast_test' (pytest -m 'slow_test' is also possible). To exclude all slow running tests try pytest -m 'not slow_test'.

This is implemented using pytest attributes. If a tests runs longer than 1 second, it is marked as slow, else as fast.

All contributors are welcome!

Making a Release

The release procedure is almost completely automated. By tagging a new release travis will build all required packages and push them to PyPI. To make a release create a new issue and work through the following checklist:

  • update the version tag in __init__.py

  • update the version tag mentioned in the README

  • check if the dependencies in setup.py are valid or need unpinning

  • check that the doc/whats_new/v0.X.rst is up to date

  • did the last build of master succeed?

  • create a new release

  • ping conda-forge

Before making a release we usually create a release candidate. If the next release is v0.X then the release candidate should be tagged v0.Xrc1 in __init__.py. Mark a release candidate as a “pre-release” on GitHub when you tag it.

Commercial support

Feel free to get in touch if you need commercial support or would like to sponsor development. Resources go towards paying for additional work by seasoned engineers and researchers.

Made possible by

The scikit-optimize project was made possible with the support of

Wild Tree Tech NYU Center for Data Science NSF Northrop Grumman

If your employer allows you to work on scikit-optimize during the day and would like recognition, feel free to add them to the “Made possible by” list.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-optimize-0.8.dev0.tar.gz (269.2 kB view details)

Uploaded Source

Built Distribution

scikit_optimize-0.8.dev0-py2.py3-none-any.whl (95.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file scikit-optimize-0.8.dev0.tar.gz.

File metadata

  • Download URL: scikit-optimize-0.8.dev0.tar.gz
  • Upload date:
  • Size: 269.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.10

File hashes

Hashes for scikit-optimize-0.8.dev0.tar.gz
Algorithm Hash digest
SHA256 b19a0fce12286aeb1631c68e84a0055e51689de91d35d1a81bb6f888b20f579c
MD5 5f65b058724e83712174206a320a6a0b
BLAKE2b-256 d8b8186a1b10fb3e0bd14e7808b7b894b7d26fc275a04c3321ef270812325ec0

See more details on using hashes here.

File details

Details for the file scikit_optimize-0.8.dev0-py2.py3-none-any.whl.

File metadata

  • Download URL: scikit_optimize-0.8.dev0-py2.py3-none-any.whl
  • Upload date:
  • Size: 95.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.10

File hashes

Hashes for scikit_optimize-0.8.dev0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 4c0053752f19439476355ebf5f763cbdf61ff06d0cf033789b939e0a47329841
MD5 ffb132c87130fad62551f523b09cee84
BLAKE2b-256 1cf5011fccc25450225ee4d31c14aa20d9803c544e4bf972cd03c07b05045b50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page