Skip to main content

An easy-to-use library for recommender systems.

Project description

[![GitHub version](https://badge.fury.io/gh/nicolashug%2FSurprise.svg)](https://badge.fury.io/gh/nicolashug%2FSurprise)
[![Documentation Status](https://readthedocs.org/projects/surprise/badge/?version=latest)](http://surprise.readthedocs.io/en/latest/?badge=latest)
[![Build Status](https://travis-ci.org/NicolasHug/Surprise.svg?branch=master)](https://travis-ci.org/NicolasHug/Surprise)
[![python versions](https://img.shields.io/badge/python-2.7%2C%203.5-blue.svg)](http://surpriselib.com)
[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)




Surprise
========

Overview
--------

[Surprise](http://surpriselib.com) is an easy-to-use Python
[scikit](https://www.scipy.org/scikits.html) for recommender systems.

[Surprise](http://surpriselib.com) **was designed with the
following purposes in mind**:

- Give the user perfect control over his experiments. To this end, a strong
emphasis is laid on
[documentation](http://surprise.readthedocs.io/en/latest/index.html), which we
have tried to make as clear and precise as possible by pointing out every
details of the algorithms.
- Alleviate the pain of [Dataset
handling](http://surprise.readthedocs.io/en/latest/getting_started.html#load-a-custom-dataset).
Users can use both *built-in* datasets
([Movielens](http://grouplens.org/datasets/movielens/),
[Jester](http://eigentaste.berkeley.edu/dataset/)), and their own *custom*
datasets.
- Provide various ready-to-use [prediction
algorithms](http://surprise.readthedocs.io/en/latest/prediction_algorithms_package.html)
such as [baseline
algorithms](http://surprise.readthedocs.io/en/latest/basic_algorithms.html),
[neighborhood
methods](http://surprise.readthedocs.io/en/latest/knn_inspired.html), matrix
factorization-based (
[SVD](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD),
[PMF](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#unbiased-note),
[SVD++](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp),
[NMF](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF)),
and [many
others](http://surprise.readthedocs.io/en/latest/prediction_algorithms_package.html).
Also, various [similarity
measures](http://surprise.readthedocs.io/en/latest/similarities.html)
(cosine, MSD, pearson...) are built-in.
- Make it easy to implement [new algorithm
ideas](http://surprise.readthedocs.io/en/latest/building_custom_algo.html).
- Provide tools to [evaluate](http://surprise.readthedocs.io/en/latest/evaluate.html),
[analyse](http://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/KNNBasic_analysis.ipynb/)
and
[compare](http://nbviewer.jupyter.org/github/NicolasHug/Surprise/blob/master/examples/notebooks/Compare.ipynb)
the algorithms performance. Cross-validation procedures can be run very
easily, as well as [exhaustive search over a set of
parameters](http://surprise.readthedocs.io/en/latest/getting_started.html#tune-algorithm-parameters-with-gridsearch).


The name *SurPRISE* (roughly :) ) stands for Simple Python RecommendatIon
System Engine.


Example
-------

Here is a simple example showing how you can (down)load a dataset, split it for
3-folds cross-validation, and compute the MAE and RMSE of the
[SVD](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD)
algorithm.

```python
from surprise import SVD
from surprise import Dataset
from surprise import evaluate


# Load the movielens-100k dataset (download it if needed),
# and split it into 3 folds for cross-validation.
data = Dataset.load_builtin('ml-100k')
data.split(n_folds=3)

# We'll use the famous SVD algorithm.
algo = SVD()

# Evaluate performances of our algorithm on the dataset.
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])

print(perf)
```

**Output**:

```
Evaluating RMSE, MAE of algorithm SVD.

Fold 1 Fold 2 Fold 3 Mean
MAE 0.7475 0.7447 0.7425 0.7449
RMSE 0.9461 0.9436 0.9425 0.9441
```

[Surprise](http://surpriselib.com) can do **much** more (e.g,
[GridSearch](http://surprise.readthedocs.io/en/latest/getting_started.html#tune-algorithm-parameters-with-gridsearch)).
Check the [User
Guide](http://surprise.readthedocs.io/en/latest/getting_started.html)!


Benchmarks
----------

Here are the average RMSE, MAE and total execution time of various algorithms
(with their default parameters) on a 5-folds cross-validation procedure. The
datasets are the [Movielens](http://grouplens.org/datasets/movielens/) 100k and
1M datasets. The folds are the same for all the algorithms (the random seed is
set to 0). All experiments are run on a small laptop with Intel Core i3 1.7
GHz, 4Go RAM. The execution time is the *real* execution time, as returned by
the GNU [time](http://man7.org/linux/man-pages/man1/time.1.html) command.

| [Movielens 100k](http://grouplens.org/datasets/movielens/100k) | RMSE | MAE | Time (s) |
|-----------------|:------:|:------:|:--------:|
| [NormalPredictor](http://surprise.readthedocs.io/en/latest/basic_algorithms.html#surprise.prediction_algorithms.random_pred.NormalPredictor) | 1.5228 | 1.2242 | 4 |
| [BaselineOnly](http://surprise.readthedocs.io/en/latest/basic_algorithms.html#surprise.prediction_algorithms.baseline_only.BaselineOnly) | .9445 | .7488 | 5 |
| [KNNBasic](http://surprise.readthedocs.io/en/latest/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBasic) | .9789 | .7732 | 27 |
| [KNNWithMeans](http://surprise.readthedocs.io/en/latest/knn_inspired.html#surprise.prediction_algorithms.knns.KNNWithMeans) | .9514 | .7500 | 30 |
| [KNNBaseline](http://surprise.readthedocs.io/en/latest/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBaseline) | .9306 | .7334 | 44 |
| [SVD](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD) | .9396 | .7412 | 46 |
| [SVD++](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp) | .9200 | .7253 | 31min |
| [NMF](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF) | .9634 | .7572 | 55 |
| [Slope One](http://surprise.readthedocs.io/en/latest/slope_one.html#surprise.prediction_algorithms.slope_one.SlopeOne) | .9454 | .7430 | 25 |
| [Co clustering](http://surprise.readthedocs.io/en/latest/co_clustering.html#surprise.prediction_algorithms.co_clustering.CoClustering) | .9678 | .7579 | 15 |


| [Movielens 1M](http://grouplens.org/datasets/movielens/1m) | RMSE | MAE | Time (min) |
|-----------------|:------:|:------:|:--------:|
| [NormalPredictor](http://surprise.readthedocs.io/en/latest/basic_algorithms.html#surprise.prediction_algorithms.random_pred.NormalPredictor) | 1.5037 | 1.2051 | < 1 |
| [BaselineOnly](http://surprise.readthedocs.io/en/latest/basic_algorithms.html#surprise.prediction_algorithms.baseline_only.BaselineOnly) | .9086 | .7194 | < 1 |
| [KNNBasic](http://surprise.readthedocs.io/en/latest/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBasic) | .9207 | .7250 | 22 |
| [KNNWithMeans](http://surprise.readthedocs.io/en/latest/knn_inspired.html#surprise.prediction_algorithms.knns.KNNWithMeans) | .9292 | .7386 | 22 |
| [KNNBaseline](http://surprise.readthedocs.io/en/latest/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBaseline) | .8949 | .7063 | 44 |
| [SVD](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD) | .8936 | .7057 | 7 |
| [NMF](http://surprise.readthedocs.io/en/latest/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF) | .9155 | .7232 | 9 |
| [Slope One](http://surprise.readthedocs.io/en/latest/slope_one.html#surprise.prediction_algorithms.slope_one.SlopeOne) | .9065 | .7144 | 8 |
| [Co clustering](http://surprise.readthedocs.io/en/latest/co_clustering.html#surprise.prediction_algorithms.co_clustering.CoClustering) | .9155 | .7174 | 2 |

Installation / Usage
--------------------

The easiest way is to use pip (you'll need [numpy](http://www.numpy.org/)):

$ pip install scikit-surprise

Or you can clone the repo and build the source (you'll need
[Cython](http://cython.org/) and [numpy](http://www.numpy.org/)):

$ git clone https://github.com/NicolasHug/surprise.git
$ python setup.py install

Documentation, Getting Started
------------------------------

The documentation with many other usage examples is [available
online](http://surprise.readthedocs.io/en/latest/index.html) on ReadTheDocs.

License
-------

This project is licensed under the [BSD
3-Clause](https://opensource.org/licenses/BSD-3-Clause) license.

Acknowledgements:
----------------

- [Pierre-François Gimenez](https://github.com/PFgimenez), for his valuable
insights on software design.
- [Maher Malaeb](https://github.com/mahermalaeb), for the
[GridSearch](http://surprise.readthedocs.io/en/latest/evaluate.html#surprise.evaluate.GridSearch)
implementation.

Contributing, feedback
----------------------

Any kind of feedback/criticism would be greatly appreciated (software design,
documentation, improvement ideas, spelling mistakes, etc...).

If you'd like to see some features or algorithms implemented in
[Surprise](http://surpriselib.com), please let us know! Some of the current
ideas are:

- Bayesian PMF
- RBM for CF

Please feel free to contribute (see
[guidelines](https://github.com/NicolasHug/Surprise/blob/master/CONTRIBUTING.md))
and send pull requests!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-surprise-1.0.1.tar.gz (1.5 MB view details)

Uploaded Source

File details

Details for the file scikit-surprise-1.0.1.tar.gz.

File metadata

File hashes

Hashes for scikit-surprise-1.0.1.tar.gz
Algorithm Hash digest
SHA256 33abd1cd65f1048e247524ed7456eff8098b0736f9a9efe24627f95ae054cf84
MD5 de5cced29d640b19126598d8902bb7e5
BLAKE2b-256 ce2cf224725a3b13fae841a3854791dd2884b98e83ff1a7e8b02c09fe9abdd0f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page