Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics,

science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.13.0.zip (11.3 MB view details)

Uploaded Source

scipy-0.13.0.tar.gz (10.1 MB view details)

Uploaded Source

Built Distributions

scipy-0.13.0-cp34-cp34m-manylinux1_x86_64.whl (32.5 MB view details)

Uploaded CPython 3.4m

scipy-0.13.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (25.8 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.13.0-cp33-cp33m-manylinux1_x86_64.whl (31.9 MB view details)

Uploaded CPython 3.3m

scipy-0.13.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (25.8 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.13.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (26.4 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.13.0-cp27-cp27mu-manylinux1_x86_64.whl (32.5 MB view details)

Uploaded CPython 2.7mu

scipy-0.13.0-cp27-cp27m-manylinux1_x86_64.whl (32.5 MB view details)

Uploaded CPython 2.7m

scipy-0.13.0-cp26-cp26mu-manylinux1_x86_64.whl (32.6 MB view details)

Uploaded CPython 2.6mu

File details

Details for the file scipy-0.13.0.zip.

File metadata

  • Download URL: scipy-0.13.0.zip
  • Upload date:
  • Size: 11.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.13.0.zip
Algorithm Hash digest
SHA256 2c56de6724201cc960f834189b1f97ead0dda9a48ca806f675a9b62a14a3f7c8
MD5 bd588ce8255e4d5427b5b19e9da2d4c7
BLAKE2b-256 76d1c41cebf205a445722eb004364a971c3b6dff9ab88430a0adae808407e9ef

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.0.tar.gz.

File metadata

  • Download URL: scipy-0.13.0.tar.gz
  • Upload date:
  • Size: 10.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.13.0.tar.gz
Algorithm Hash digest
SHA256 e7fe93ffc4b55d8357238406b1b9e47a4f932474238e2bfdb552423bcd45dc5e
MD5 ffa1e9bfd2bbdf3f17f4cf8139084098
BLAKE2b-256 34acf793c8f18b6f188788b37aae02d94689ac8df317f09a681a3a61ecc466ab

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 19ffd3f6b4e5bc3fdde459fa3b6a7e0df128c94aaf964d93bf1cf6c9831c2ab1
MD5 b6c91770daa84d136d802ee2216e2765
BLAKE2b-256 7691f9d5c571e185509ed293259bd75abc688dc719217c8ef0bb99aea8596671

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45c60ccd7efed7ce07b1106a5a9f4124515bb1f0c72360aaa4b5a341bb95b364
MD5 dcd20dad203d301f0b5ec7aa0bb49aa3
BLAKE2b-256 d62cc97267e4f22e48ad110161b5346a7673a38841de76904f343e739a837c93

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.0-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.0-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c53fe3f6a51120f5261947d1ee25033787fa2facd64fb49cbab49ba22ecf6910
MD5 61e81cfb1d1e66d83c02866a31e655a7
BLAKE2b-256 878f88a1066f643d65c58fedd869aa480e6c743e715334b3584035d4fada2dc7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f0c05a0d12545c1d6a125a76f6520bb91b0d02a39f14e7ea397792d397145f3
MD5 d451fff29fd3d7aa501d6206bfed15f2
BLAKE2b-256 633fb69f4504e23400a6fa7c56c2b0a36d4cc40fd23341c9ffb2e1bc474309ff

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5d40de8d8f208a4f14c21b7985d332d0ca216ac427f205ed7d613fe36b01783
MD5 0b3c405ba421f43cf97837c5aa172515
BLAKE2b-256 a73f2e92b9dcd8371ee64837551549b407f46272b7169ddca2145fe23101d5ed

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9e134ad32bca87f102f42360d71834c234066427407c2601bb307380585b1851
MD5 bcc4468cf94875011fbadc6fb6e6070c
BLAKE2b-256 40eedbf4f8da26a04e68680138dc4feb80fd648d0ff34673e782a2d363d67cb5

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6c35ae71ce9053455aae70237c81d711b012400bd011730745b952b44bb01faa
MD5 6c3778a88852edca05a164345193120f
BLAKE2b-256 dfc4ba1327f80b5663943e0cfa80c640ea3372fd2b65e42cc5159726fe02cf0a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.0-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.0-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 619be58b933459274c13f69b2690cdfab6b21f0e100393d427a4db0bcf3aaa8d
MD5 3c75d204b5372372272f08ad9797813d
BLAKE2b-256 b9e33d97e84e7c6ba21c937a1d3222c846a4cb8aee3d4dae5166c2b6bb4e88a1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page