Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics,

science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.13.3.zip (12.1 MB view details)

Uploaded Source

scipy-0.13.3.tar.gz (10.7 MB view details)

Uploaded Source

Built Distributions

scipy-0.13.3-cp34-cp34m-manylinux1_x86_64.whl (32.6 MB view details)

Uploaded CPython 3.4m

scipy-0.13.3-cp34-cp34m-macosx_10_6_intel.whl (58.3 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel

scipy-0.13.3-cp33-cp33m-manylinux1_x86_64.whl (32.1 MB view details)

Uploaded CPython 3.3m

scipy-0.13.3-cp33-cp33m-macosx_10_6_intel.whl (58.2 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel

scipy-0.13.3-cp27-none-macosx_10_6_intel.whl (62.5 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel

scipy-0.13.3-cp27-cp27mu-manylinux1_x86_64.whl (32.5 MB view details)

Uploaded CPython 2.7mu

scipy-0.13.3-cp27-cp27m-manylinux1_x86_64.whl (32.6 MB view details)

Uploaded CPython 2.7m

scipy-0.13.3-cp26-cp26mu-manylinux1_x86_64.whl (32.6 MB view details)

Uploaded CPython 2.6mu

File details

Details for the file scipy-0.13.3.zip.

File metadata

  • Download URL: scipy-0.13.3.zip
  • Upload date:
  • Size: 12.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.13.3.zip
Algorithm Hash digest
SHA256 147579177cea79db57d594c1d267c1a4cf179e3597e58cce070392ef39dcd9f7
MD5 20ff3a867cc5925ef1d654aed2ff7e88
BLAKE2b-256 d5005eeed7c67fa5ca80dad12c399bb31450733f0a874a2c8c4d9a8e8ab281c0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.3.tar.gz.

File metadata

  • Download URL: scipy-0.13.3.tar.gz
  • Upload date:
  • Size: 10.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.13.3.tar.gz
Algorithm Hash digest
SHA256 a9e33c7ee060c35cd5c6ee3ac9e5e9bbb99219d7ea8c89537c2e80e581670266
MD5 0547c1f8e8afad4009cc9b5ef17a2d4d
BLAKE2b-256 2f12565c08132db50a0ba34a33e0901f3d1d4d72e3b432ea828e4d87be5a4991

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.3-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.3-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 49e15363c65fe2cb9a52de3f9d223f64fa1d7a716282121af0d50b4e8e5a35a9
MD5 c53c78818bd7c3d7aa0164c468323158
BLAKE2b-256 1a650a776262af035e07cb499d551114c6de00a5816b652f8dfcf95be5df214a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.3-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for scipy-0.13.3-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 d516da969bf90b95c709f7f23a08bc200507273bea6c6bfd8a3c1bdca6b30a2b
MD5 0042a2e09d1632b47ed4fdb411cf9821
BLAKE2b-256 57c9da06bc960279c0561e122439e781b45348811523aac3ccb643a4d1ed3839

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.3-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.3-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7f4806bf4350ffcbf43830ed52a652e7b761f7e74c1366155320c203015e4635
MD5 aaede5ee9249a2ee0daab1b68a860fa0
BLAKE2b-256 477c2863bc6f599cfad79252e63638ae9aa3748850e4d51c21b481263212090f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.3-cp33-cp33m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for scipy-0.13.3-cp33-cp33m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 9585e4aa9c3e2c405833d7159225cefe380ac3bfdfa9dbcc44d83647daaf7f78
MD5 ca634955b1757fe5e22c6a8a035bb328
BLAKE2b-256 c859e3745842c71d31c3d2be3aead63b946a09da621aef88fc6182cb210294d1

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.3-cp27-none-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for scipy-0.13.3-cp27-none-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 51a2f4e63db8dd3cad8afca7322d7b9ca7cc600454fd09fa2bb94cee3fa304d9
MD5 4bc791c9f37645380cab2843e63d18db
BLAKE2b-256 6f3489d8a7d2f5d7c4e4ebd75f44adb4367b14abbd8dd28ab17bc798d4e38629

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 77906ba1afba1616acbfb23b4d3cdcfe57f599b5effb838b03735120677516ba
MD5 27aaae1bd5112533da19e98bef5b74f3
BLAKE2b-256 2de6c5a88e2a9d92389cc358ece1602c1512ac0c03fba4ab99939e8fab8fabba

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 88e75eacc9092a5627c1eb49eee9f0c5f2c7dc5f312560ef779492710ddd67bf
MD5 0b733ba4af26366baa9797a3880cefcb
BLAKE2b-256 3a2b02a9496828e319b0dbcf4f8d71be0b25908fec39f28271914541eb6edf8d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.13.3-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.13.3-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ecae03b53782233a8e829e5f925cb286d01f0bcd00e50523c82a715eae5981ed
MD5 644f9b77a711d32739aaefd0d2d04b28
BLAKE2b-256 e7c79eecef11ac159979d043800face03757ca64e9e1c8985bf6d1db5d424cc6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page