Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics,

science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.14.0.zip (11.5 MB view details)

Uploaded Source

scipy-0.14.0.tar.gz (10.2 MB view details)

Uploaded Source

Built Distributions

scipy-0.14.0-cp34-cp34m-manylinux1_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.4m

scipy-0.14.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (25.9 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.14.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (25.9 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.14.0-cp33-cp33m-manylinux1_x86_64.whl (34.5 MB view details)

Uploaded CPython 3.3m

scipy-0.14.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (25.9 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.14.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (25.9 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.14.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (26.7 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.14.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (26.7 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.14.0-cp27-cp27mu-manylinux1_x86_64.whl (35.3 MB view details)

Uploaded CPython 2.7mu

scipy-0.14.0-cp27-cp27m-manylinux1_x86_64.whl (35.2 MB view details)

Uploaded CPython 2.7m

scipy-0.14.0-cp26-cp26mu-manylinux1_x86_64.whl (35.3 MB view details)

Uploaded CPython 2.6mu

File details

Details for the file scipy-0.14.0.zip.

File metadata

  • Download URL: scipy-0.14.0.zip
  • Upload date:
  • Size: 11.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.14.0.zip
Algorithm Hash digest
SHA256 e5d8337bb3cc691b480a3a53ab484dc2c5c9a233dddb0e4111c2c9dc2273b8bb
MD5 7ee4fa9e756bab6b46b79f77c821cb68
BLAKE2b-256 3fb6a92d396a55266fc90995202d7baad3aab9eb0e832ac8e91a16cb69c372c4

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0.tar.gz.

File metadata

  • Download URL: scipy-0.14.0.tar.gz
  • Upload date:
  • Size: 10.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.14.0.tar.gz
Algorithm Hash digest
SHA256 4b41a3e6bf178df1c7f0ef3bfeabf1f56610329aca5dbd7b6d64da8ac9af6b14
MD5 d7c7f4ccf8b07b08d6fe49d5cd51f85d
BLAKE2b-256 763dad5f3d19d553cf4a01fb57dd95dc83d9493e3d289511881d4900e0f17ac0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 66bd29e8838410ea75c7c6d2cf67b53d5aaa6e26191091108c045011c6c269e9
MD5 0fc011090a2976a5a9154d5ba182b765
BLAKE2b-256 7b099813b0e9eedc989ff6ac8e544198f126e0801d79922725585579f82ab157

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 851a238d1bd894aa4b6242eb47ead33b12cf3b5e75dff2850f81011beaace51f
MD5 de679794f46812c784845835371539f4
BLAKE2b-256 19bcbebd680620eab9a0d28db680421fc28629f3a8f77b4798976a3d2c18774b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d8d4b9f4969b43bde592b100c7b8f80d8d4ec91b4de0b11ec07c0d5581ee50ce
MD5 f5cf7e6eec6f7d41c6e46f32834d675d
BLAKE2b-256 be316cd7cbbf882483fe89df9763626a7120a15b52a8c63eac049fc3cbca9911

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 474a0b4882d83c6806df89b53d270d9eb06c52d4f66f417085576f6293a95f6c
MD5 8354b87afa767e50d9a191daa1ff7ca0
BLAKE2b-256 7ad12eb817c4c467b3f5ee64a0cdadd0c8b6293b6408674506d726c1a57ea2a7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 539a3efc9b039e40a8de1ffe904616640d7ef7ac9a45346a443fac9453eeb0bd
MD5 0ff3c20cb8e9c5c38e5a18cda3178ca7
BLAKE2b-256 f9276b42b47677b435c3b60bf7b6a39da93aff70c93803b402a03648c5a1fcd3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 adbc7c475789659f87cab65fadca996331a051546198e0fa1d2674f5d87982f2
MD5 f2b504a8e3d5ee0ae33d7052a994a029
BLAKE2b-256 ab6d548d3643422fba98fbb513550974389115c9d55d13cd55deb3bcbdf39af7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ed95f5fdc1fca815efd06a266f0d2da5503f3ac7cd0640ed8670247ed4c9cab
MD5 d3728a6d43c3265003db3781cbd4660f
BLAKE2b-256 800d0bbff4334ed630556756a773b5e7b378709f63f79be5ccc350b5fe2883fb

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7eca8b2c70654363e1525854613bed02d41f8e350ec0aac33530f0d2e4a1042e
MD5 f56df58dd416119a23d1c58316da5c26
BLAKE2b-256 b129cba8a67487b4ff72645a9a08a047cbba766fa2050095973957c08437b09b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 329f9b227a835780f41f5b8cba6a2bc622a3651c639e544869fc487e0d49556c
MD5 1823637e1d7c2a86b4edc1ef589c9137
BLAKE2b-256 13b270a4992e0ef711122ba1d7fc0edc5fe121b105f768c020eff1ffac2ea8a0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 59202b6f203b017044d271434f79f4399acb6f9880f02faebc17f60038603a43
MD5 239ecb6a4f3bf0b3154539e710453f6a
BLAKE2b-256 745569a4e7d9c093b4b2bb6c60ad634a122f93bf420c83331df6f3a6fbfad248

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.14.0-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.14.0-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 39881dbb245ec67763cd2b7d333e0b3d676599b1fe339ec7718c4b8e4713cf70
MD5 699f733b2850b3793cf4517cceba368a
BLAKE2b-256 e2515ce532e6edc6770472e72edf9299d8bca7f31576bc45b33e93e250573ab2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page