Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics,

science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.15.0.zip (12.7 MB view details)

Uploaded Source

scipy-0.15.0.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

scipy-0.15.0-cp34-cp34m-manylinux1_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.4m

scipy-0.15.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.15.0-cp33-cp33m-manylinux1_x86_64.whl (36.0 MB view details)

Uploaded CPython 3.3m

scipy-0.15.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.15.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.8 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.15.0-cp27-cp27mu-manylinux1_x86_64.whl (36.9 MB view details)

Uploaded CPython 2.7mu

scipy-0.15.0-cp27-cp27m-manylinux1_x86_64.whl (36.9 MB view details)

Uploaded CPython 2.7m

scipy-0.15.0-cp26-cp26mu-manylinux1_x86_64.whl (36.8 MB view details)

Uploaded CPython 2.6mu

File details

Details for the file scipy-0.15.0.zip.

File metadata

  • Download URL: scipy-0.15.0.zip
  • Upload date:
  • Size: 12.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.15.0.zip
Algorithm Hash digest
SHA256 763f7d7d982b82c78e174c36dc541fbc914c63c2c3a708f7f6d2bc1a75a03b1f
MD5 09641b11ac17f1c141979c60a3f60895
BLAKE2b-256 b78b66ea869c3a3b6216ff166a45c331c1c6d4a7b79e3db7c8cda5a9f91f09dc

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.0.tar.gz.

File metadata

  • Download URL: scipy-0.15.0.tar.gz
  • Upload date:
  • Size: 11.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.15.0.tar.gz
Algorithm Hash digest
SHA256 0c74e31e08acc8bf9b6ceb9bced73df2ae0cc76003e0366350bc7b26292bf8b1
MD5 639112f077f0aeb6d80718dc5019dc7a
BLAKE2b-256 96e9dc57da726dad825548b472dcaa9343486fd2ee514ac714272e38d7c6c9e1

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 77dc45c2c3de2b7550bf9f23024f95f8d16a948e3d73e16757e2daf80af9a987
MD5 a0aef54316cdf75e5fc40f2e7b9a938d
BLAKE2b-256 dbc46e2a7f46c9486c6185c60ab0718e7a1b42a971a96b063c6b6e247b7a01fa

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1747b4dca04e870004626ac93056d164dcabfa57f9face78852ba070d01590c4
MD5 4b7fc70b09576ef91e3ff4b005816379
BLAKE2b-256 5a661ae35b5c0c83f6d1abbe5d215a9968c70cb188d50e09c01e01e0f38994fc

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.0-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.0-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7b4057d56fa934d98973b7f9ee3e4def7c9f0b736f2df3e058109facab83bf83
MD5 e0078c66efcf3cc1ad033305c435c367
BLAKE2b-256 9e12a15e8acb2a6684567545169f361f381d129573ee55bffd8944cae31c696d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4a11866ab010999b78dbe5fa9531fdfb67094332345490bb540972a760827924
MD5 f6c96a2cb737ad9f3f47db5089f8eba4
BLAKE2b-256 038594259e11ad53aad9e508c2a4e80d7db603c4180c4cacd0f02c51563aa15f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7467e325deef1fcd719a67980434137e38c10cef312ccfb679b345eb3f307209
MD5 7c431a473ac65fd7cab4859c3743088b
BLAKE2b-256 a6e08ad8816c1a02ac47a6c13de4f2e70c2eddfe650a678263f8d891b4caea7a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fb855166028297e39e26e299ccc76c4994424c74d7eb9e5aca9bc70b6fa97273
MD5 c92f3760a6735754c6d9bc379cbe4b67
BLAKE2b-256 c027de0e8f452c66eefccb76a029aa8072c6c6f5cc94a52632a6ffed8bcd8f4c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 35cfbd081c07950e60ee8283eaf662deeee40d452c7e66b6f3945e82ab4a92a9
MD5 964cec623705873ec1c37408ecf96de6
BLAKE2b-256 0759a7746e40e709a23f14b3bac4567fd6ec529e72545c54929b9a66ef5c7771

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.0-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.0-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 193e56364b185e61d1831c1394a7856e64fcb2a2f5560e27caa4025c86f7dcca
MD5 2671a18cdee0149f27d357c8e0035ac5
BLAKE2b-256 bca86d787f6014b0d2779c632c244d8351d89919a8d1412575bd4d975e0443e7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page