Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics,

science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.15.1.zip (12.7 MB view details)

Uploaded Source

scipy-0.15.1.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

scipy-0.15.1-cp34-cp34m-manylinux1_x86_64.whl (36.7 MB view details)

Uploaded CPython 3.4m

scipy-0.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.15.1-cp33-cp33m-manylinux1_x86_64.whl (36.1 MB view details)

Uploaded CPython 3.3m

scipy-0.15.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.15.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.8 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.15.1-cp27-cp27mu-manylinux1_x86_64.whl (37.0 MB view details)

Uploaded CPython 2.7mu

scipy-0.15.1-cp27-cp27m-manylinux1_x86_64.whl (36.9 MB view details)

Uploaded CPython 2.7m

scipy-0.15.1-cp26-cp26mu-manylinux1_x86_64.whl (36.9 MB view details)

Uploaded CPython 2.6mu

File details

Details for the file scipy-0.15.1.zip.

File metadata

  • Download URL: scipy-0.15.1.zip
  • Upload date:
  • Size: 12.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.15.1.zip
Algorithm Hash digest
SHA256 8e4febc8cefdce246e1cdb6b891d41a62fd25aec8dc2cd7ee9f2202ee523a4a4
MD5 0bd8aa1133118abc77d0d69cc2777ef3
BLAKE2b-256 861cecd14ac89d2d3ad8c06abb5cd406a33f6acd52f2f3656bd372b44ff43ddf

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.1.tar.gz.

File metadata

  • Download URL: scipy-0.15.1.tar.gz
  • Upload date:
  • Size: 11.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.15.1.tar.gz
Algorithm Hash digest
SHA256 a212cbc3b79e9a563aa45fc5c517b3499198bd7eb7e7be1e047568a5f48c259a
MD5 be56cd8e60591d6332aac792a5880110
BLAKE2b-256 74e814315e1ef08322a36cf756d165385ea0f25afd289d7e86eb2a7138640153

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9822798c3ac6dff40fb7977fec359585f2b536d4b512261724e8831e0ad1199a
MD5 d5243b0f9d85f4f4cb62514c82af93d4
BLAKE2b-256 56c5e0d36aaf719aa02ee3da19151045912e240d145586612e53b5eaa706e1db

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 fa0659a551706e539358dd6ee669b5fa74c2dd736e071f459fa4bdb184dde395
MD5 d0aaf2da89af160060f1759947457ad6
BLAKE2b-256 ac556cc9fc18f3c2365c3e87e5c13d366366435b7ba0881ef03f223a596cfc9a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.1-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.1-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 25e20594ccd0cdbf94446ce63607e6af95ea734b0fd3663f0f4c78d34c2ca231
MD5 66367d0bb7f5773a5e42e5b83666b8ac
BLAKE2b-256 e5f5bbfa7b7c8d9d0bfb8bd45fa7a7f8a62be9f5af74bf9f3fec402bcfa99501

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2bdb0bf831595ced22d3f5d5ebc0e1137d99a4d1cd2ce04a0cf6099d7d9d161a
MD5 dae3174d812f31696e6d8bca2d5a1b20
BLAKE2b-256 65a04b3d716ed9299d68086ff8f68b64a0fa958ab0076a94be6b070e1fb7839f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7d9493118e90bf25984261e3436bbc141b10bbb921e2b0396d2a2fb60ebef594
MD5 a8cf565477600cbedcd5462f2baeeb0e
BLAKE2b-256 fc4e9d106d322165d4b5c75b859d79c984ab93c12525863245265d9cfee042d7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a63d3c5f2981d00b0d8141d617db3c87b4f444f75c19359653845a9fb07accbc
MD5 aaac02e6535742ab02f2075129890714
BLAKE2b-256 000f060ec52cb74dc8df1a7ef1a524173eb0bcd329110404869b392685cfc5c8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c4e12b41bf78aef7a9929eaab78df5d2042e190dbf268e711aeac7818934851d
MD5 171d36970b7d36b2285941b8bf3a2727
BLAKE2b-256 abe6071f5edebb243a7388eb4fe65608fdec7c4288bb59b91292cb149be2ebaf

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.15.1-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.15.1-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0d579f8fedddf01210ba4200a299f8124b6edc24aa2859e340be5f2f52ab3eb1
MD5 cb722e97e92dc6a10c581d89198bc2cf
BLAKE2b-256 9989a2d8e873897c8ec5d20d1ae3ef6d54825dbdf13e3e7e3bf279f516aaf371

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page