Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.16.0.zip (19.3 MB view details)

Uploaded Source

scipy-0.16.0.tar.gz (18.1 MB view details)

Uploaded Source

Built Distributions

scipy-0.16.0-cp35-cp35m-manylinux1_x86_64.whl (39.7 MB view details)

Uploaded CPython 3.5m

scipy-0.16.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.16.0-cp34-cp34m-manylinux1_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.4m

scipy-0.16.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.16.0-cp33-cp33m-manylinux1_x86_64.whl (37.4 MB view details)

Uploaded CPython 3.3m

scipy-0.16.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.16.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (20.5 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.16.0-cp27-cp27mu-manylinux1_x86_64.whl (38.2 MB view details)

Uploaded CPython 2.7mu

scipy-0.16.0-cp27-cp27m-manylinux1_x86_64.whl (38.1 MB view details)

Uploaded CPython 2.7m

scipy-0.16.0-cp26-cp26mu-manylinux1_x86_64.whl (38.1 MB view details)

Uploaded CPython 2.6mu

File details

Details for the file scipy-0.16.0.zip.

File metadata

  • Download URL: scipy-0.16.0.zip
  • Upload date:
  • Size: 19.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.16.0.zip
Algorithm Hash digest
SHA256 c9758971df994d238a4d0ff1d47ba5b02f1cb402d6e1925c921a452bc430a3d5
MD5 1764bd452a72698b968ad13e51e28053
BLAKE2b-256 8ca0bcb7480b0b9a38f4f6026c9cf4168fd2d648227af1429e5fa174f3316525

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0.tar.gz.

File metadata

  • Download URL: scipy-0.16.0.tar.gz
  • Upload date:
  • Size: 18.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.16.0.tar.gz
Algorithm Hash digest
SHA256 92592f40097098f3fdbe7f5855d535b29bb16719c2bb59c728bce5e7a28790e0
MD5 eb95dda0f36cc3096673993a350cde77
BLAKE2b-256 46b681a0f305a81b48aa1338da1018ae022c6cff1c83f78fc7f831057db3d46a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dd567b699212c997721a303cc9d7cb9644cb28ae55f22b622e0fd6cabcb905c5
MD5 ccd82ddc3e3b7f0d35c04a5fe248f699
BLAKE2b-256 19853add57ed6cdfbe798aa35e63bc3c8d159fed13e437841c32cf73bac850b6

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 6a5f84e8e1c6f547e4f8df184f00a88ca0c8490207ab562e64f036843bde17d3
MD5 173cc55ccbe96033b5cab3ad276158e4
BLAKE2b-256 8394689cbec699b0f1dd230ceb41acda1ac1b212c028c570c4ca932649330e85

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 82b23dcb063d2c3ee789131632a3d483421de95cd07eebb93cc5ef0272a3ff06
MD5 7dca6350615b0b32619f8b437cffac97
BLAKE2b-256 fdd91cb8ab24adeb3ffca0fa5ac8c1875bdb0452a773a68095c7824ced4b4f2e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d14f1ddc1e0a3f72f433dd201e400a901dac8d5fe45382c386c44b2ca34efdd5
MD5 66095f15bbb94db991cdb4cc66eac01b
BLAKE2b-256 68148b5f70e1ad66fbb9548a00e42cec56de84bec815912b8c9f53c179802fd9

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a2317745044e763031d0f9ebce228cdd3e304668fcac77b76825d183ee5d2901
MD5 94b63402dfe4685ccc71436c3e7ab083
BLAKE2b-256 e2a921f537f6561ae56e063f1b704620ff2e1c88fc55f82d9265f9c5e73f7eb9

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c0ea84e8d692b5421c5fee3e38d4145b26f93c2a4b3d09d44b5752b2c8794491
MD5 e4f22d7fd97ce305902e6251d3248466
BLAKE2b-256 5c490f8a39d8a271810a4fc490159a4b5d33bcea86b055c875f781c29d4ed211

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0bf2e69d4cb10fd8cdb9b24fba17bac4b5950abb3dc4771732746eeab8f27f79
MD5 60e842bcf8b95affc19ef6f2a4bd5bb9
BLAKE2b-256 5ed834e59388803d46e830bf932ab86bd8ccdaf3ce81b1a28302b249948a5ed6

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 36e892f4ed6aaf012e75aeec3761a61a32a7be928375f980005adf12f8625969
MD5 53725579d80f7118cfb79dab0a2edd90
BLAKE2b-256 e19ac0f5e7f0e73de51fd93682f4a43a79383b2ff3585d7b25170da5d9034ea1

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4866154dfa7d3e03fc37fa9c7f16edd72a1e8051742c2fd830920a19a52e3683
MD5 157f0742d192e968b558056a820e5b59
BLAKE2b-256 9a01e497d137fa5cccab3274d15ff15ae7230203b8bacb02e0316b08fd548d6f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.0-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.0-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f8a11bb76e090a098452dafb1288c1d208c40abe8ce629959addd19858fbd3c8
MD5 ce3596b14d36bb92180f90a290e3afd6
BLAKE2b-256 1ffa8ffc385c865beebb0d34b7e685fc1cfd8632e3e2870e21b87397d057f58c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page