Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.16.1.zip (13.6 MB view details)

Uploaded Source

scipy-0.16.1.tar.gz (12.2 MB view details)

Uploaded Source

Built Distributions

scipy-0.16.1-cp35-cp35m-manylinux1_x86_64.whl (39.7 MB view details)

Uploaded CPython 3.5m

scipy-0.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.16.1-cp34-cp34m-manylinux1_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.4m

scipy-0.16.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.16.1-cp33-cp33m-manylinux1_x86_64.whl (37.4 MB view details)

Uploaded CPython 3.3m

scipy-0.16.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.16.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (20.5 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.16.1-cp27-cp27mu-manylinux1_x86_64.whl (38.2 MB view details)

Uploaded CPython 2.7mu

scipy-0.16.1-cp27-cp27m-manylinux1_x86_64.whl (38.2 MB view details)

Uploaded CPython 2.7m

scipy-0.16.1-cp26-cp26mu-manylinux1_x86_64.whl (38.1 MB view details)

Uploaded CPython 2.6mu

File details

Details for the file scipy-0.16.1.zip.

File metadata

  • Download URL: scipy-0.16.1.zip
  • Upload date:
  • Size: 13.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.16.1.zip
Algorithm Hash digest
SHA256 4a83138126fea3cd3d70a440247c8959f0ede63ce6e6084580837d5d936ac3c6
MD5 f473f9cd366daf4106003accff32c25f
BLAKE2b-256 eb8bcb7e8eb19e1ee365afcf885ddaccee87e0ec0946ba06b9a3a479dbfaff3c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1.tar.gz.

File metadata

  • Download URL: scipy-0.16.1.tar.gz
  • Upload date:
  • Size: 12.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.16.1.tar.gz
Algorithm Hash digest
SHA256 ecd1efbb1c038accb0516151d1e6679809c6010288765eb5da6051550bf52260
MD5 967cdb8588a4249f820344d8264a2143
BLAKE2b-256 7be1ecc1820874c396a094e6df30d4d3aa8119d4987c5ff0b9caec73db362849

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d4eb960c570dd469f289ffe7b88af5fa53ee3c751eec9de08291cb8aa24a4af7
MD5 a661d23cadb3be1bd7963c1a18c9d707
BLAKE2b-256 4bd356cbe9ed12650072ce0f9669ed99657840db15d756ce4084c82b50b92f25

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 be5be7466d0511890924dc64266354587f3b2d4877c273ed686bfac64899daef
MD5 c24f6d9fb094fff8d2cbd238d7716d21
BLAKE2b-256 027b97fcdb6ea1f618b5553efe8ebba43af76a7970219a8aa7824434104d42fd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1e3d952d0f9cfe3eeb9d5f74606b98c17a1befa64b2e23917e6d6cbe7dee04b2
MD5 fb001653cc806165a6ada759d9e76552
BLAKE2b-256 9ca9acc951901d95f5d0d954f0f226d3ba66f00acd39e8aa7bfe0728b2ac4687

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 585173d0f498e7099bfaf731b4279ea6e72d4e3fad96f0c8633ec86c22815c16
MD5 32056047a528677ec93f879c24235bc3
BLAKE2b-256 6ee8cfcfe2801887a819081cd72df1428eed591297adaa5f9c76631e7a8b1df7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 789885346291c58dca8f429d274e55dca79d6652a37b39c9e94192dc3775cad9
MD5 e4c94aeff45c4f8225b1031506af765d
BLAKE2b-256 cbdab758668af3d1436f5810b04bc54b7d86b061130fa55e1e9c21a839096a64

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5a7b5df8d5984e43ecbecbbdf0ec0b22e1fe1422e75ffed5b19e8dbf02b11efe
MD5 6083faba0ca1ff06073b0f60129da7a6
BLAKE2b-256 08b7205769a2a7d1d813b88e2936876c218ab902958160c99c26670c907fd14c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 439ee6821779b7dbcc32ba81b142e37ccd5917eb7fb0d2d7e8bc2f200a3a7125
MD5 2fe1f50ee6e49761d4b68c4a59d6ff72
BLAKE2b-256 394949ef2530361dfd90c4597f54ad48e3ae72744e2193c7c479b0bb85ca5daf

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b9dd2108e1e3da3b009c896f049a763b67389fcd6afc205555de8c1e3f313f3d
MD5 487ccca7b1527897e96e6181c04f7270
BLAKE2b-256 1172838cbee2404fad56002e0160bf9028e9dbc71c95c66d8093b70b19df0e35

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 03f611d2b0ae552e89fb4f587d6a55b35efb57f216b9f638bb2b2e0fbd7ea1c6
MD5 eec1c5913a17e1f60988ba5a3c0bbd72
BLAKE2b-256 cb9df6dcd4b43160f4798e52ff75c489a74a6363aa9ee71eaedc6f915238ec0d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.16.1-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.16.1-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f8c564b3a8f3c3633afb22e4287e5001ec1ca7e2a533a09ecd1678ca173f020e
MD5 0735aae26686ae02f7e0da11f6188d1b
BLAKE2b-256 f9f8fce4a6bac663bd7ecb9106e9e7ef6492a47f9140d489d7d04091507308b4

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page