Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.17.1.zip (13.8 MB view details)

Uploaded Source

scipy-0.17.1.tar.gz (12.4 MB view details)

Uploaded Source

Built Distributions

scipy-0.17.1-cp35-cp35m-manylinux1_x86_64.whl (41.1 MB view details)

Uploaded CPython 3.5m

scipy-0.17.1-cp35-cp35m-manylinux1_i686.whl (34.7 MB view details)

Uploaded CPython 3.5m

scipy-0.17.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.17.1-cp34-cp34m-manylinux1_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.4m

scipy-0.17.1-cp34-cp34m-manylinux1_i686.whl (33.2 MB view details)

Uploaded CPython 3.4m

scipy-0.17.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.17.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl (39.5 MB view details)

Uploaded CPython 2.7mu

scipy-0.17.1-cp27-cp27mu-manylinux1_i686.whl (33.5 MB view details)

Uploaded CPython 2.7mu

scipy-0.17.1-cp27-cp27m-manylinux1_x86_64.whl (39.5 MB view details)

Uploaded CPython 2.7m

scipy-0.17.1-cp27-cp27m-manylinux1_i686.whl (33.5 MB view details)

Uploaded CPython 2.7m

scipy-0.17.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (21.1 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file scipy-0.17.1.zip.

File metadata

  • Download URL: scipy-0.17.1.zip
  • Upload date:
  • Size: 13.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.17.1.zip
Algorithm Hash digest
SHA256 bb029d5e54093c4417bf3dad2715518ca68c2977f9d132271cf86bfecf02cabd
MD5 cdcf93e240e2b0e4007b86cb78eda438
BLAKE2b-256 9c85d8fd3c75ee4b216c0283efde113b42c8d6cf7e2d3bdd04928f5f0fcf4fc6

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1.tar.gz.

File metadata

  • Download URL: scipy-0.17.1.tar.gz
  • Upload date:
  • Size: 12.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.17.1.tar.gz
Algorithm Hash digest
SHA256 9c4cd2f8013cc4084230a0e858d7642963dbadfd76494d2fad3b0b29bebb38ac
MD5 8987b9a3e3cd79218a0a423b21c8e4de
BLAKE2b-256 055e973bf71cfa865d962a68893e35e366a0a7ac0b713bc398b4e584c1bed982

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 953aa4291b3b9ea45c7f99d30c2308baed9b0fa553455741acd9d3b28a7654c9
MD5 8e77756904c81a6f79ed10e3abf0c544
BLAKE2b-256 91f30052c245d53eb5f0e13b7215811e52af3791a8a7d31771605697c28466a0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fb58930b6a31ae3cec056fc6fa61a7a27e9d252a8e5f34c70e2500662c811809
MD5 3ab2d58731c6cef9e37381c738258e09
BLAKE2b-256 13d24e83ca14320c2836138839a2660700cbdcb548068e9abe56da75259ea3db

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f0b202cc601abafc35b483210277cf1766ec16fc914345bccc2bb5ed250ccbdc
MD5 31b721cb87fa63ba2898e153fbd758de
BLAKE2b-256 40fa1c882b421b219bbbec71bd015c683cefb5d7971cd5e9f65fb84806d51680

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 655adae33573f125c5bbbd5a68c9f93bfce5947c6ea14499aaf2fc3426c1529a
MD5 bb39b9e1d16fa220967ad7edd39a8b28
BLAKE2b-256 eb2e76aff3b25dd06cab06622f82a4790ff5002ab686e940847bb2503b4b2122

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e4f891e6a7051518be7111a67ec538b6dca20cdb18bdd8b68fd8a6200419ab74
MD5 5effa7220474b0071a3756f512076a21
BLAKE2b-256 10fe9910b5b366d4657c5bcce29e1d7b3c472166a5b0938be39c4499744848ea

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a549c1c887cb243542ea795be0103d80b1f7616a31dbc02b8a9b177a6a6ee8ab
MD5 c0f259db6fdd8554182b9dc638a1dc29
BLAKE2b-256 0d93d7dbecc8412ca69b78a8e95d227b492c1ae3c217dd7efd1b3d6319abe7f9

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ddd2b0bce0d50587324c6760a9d4e8e129459cf30c6f8a076df6be9b3f762be8
MD5 fb8db0983f17230f0ea012de425d8184
BLAKE2b-256 090cf9a5f5b33bd78255001f78174ecae5dc9b4247802204968075559a836a3c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a8da8af95381d56b398b37ee176ab9be166c614f691a6c58bca8b443bfb36fa3
MD5 8d0df61ceba78a2796f8d90fc979576f
BLAKE2b-256 8ade326cf31a5a3ba0c01c40cdd78f7140b0510ed80e6d5ec5b2ec173c72df03

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5fb2d6e7050da5965a0f979645d9e2f21ed68ca21801470b10742ede94e5e9b8
MD5 a9fde28576dfe270894eb73dd5e8dc5a
BLAKE2b-256 a43a625081f4430fc096c2bdfe11036618cc0f80ba9c680823c764efb760dc7a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4404b27058e334ea00f364393f4c49efa5c1032e6bec3e1f320bca98ae64faa8
MD5 fd79ca7e76d47b6a7e1066eba06ed23f
BLAKE2b-256 85bf9f4c4a3767034c346f7dabdc3c89f808b1e73446617d2612b34b0159c6c8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9b3ec91876f0b610e5745e10f82152f7da82a29d22c920900e5c54805f8a4270
MD5 b4dc6450e003d028138452d342f8771c
BLAKE2b-256 3f9a09edc932e4f40ddc17293747892891690e68a27714ed09bcf21bb21a5ada

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.17.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.17.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 18d2a97e50ad2239844433122fb10c7a7d171e073b87ce47f12ae8125e50cd93
MD5 ba7fead033820a678f6e1e927eb104a3
BLAKE2b-256 4d4db2020db3ab453cf3f85dc0dedae7b4a753a6887f01a83eb8114599e3d20c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page