Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

scipy-0.18.0.zip (14.6 MB view details)

Uploaded Source

scipy-0.18.0.tar.gz (13.2 MB view details)

Uploaded Source

Built Distributions

scipy-0.18.0-cp35-cp35m-manylinux1_x86_64.whl (42.0 MB view details)

Uploaded CPython 3.5m

scipy-0.18.0-cp35-cp35m-manylinux1_i686.whl (35.6 MB view details)

Uploaded CPython 3.5m

scipy-0.18.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.18.0-cp34-cp34m-manylinux1_x86_64.whl (40.3 MB view details)

Uploaded CPython 3.4m

scipy-0.18.0-cp34-cp34m-manylinux1_i686.whl (34.2 MB view details)

Uploaded CPython 3.4m

scipy-0.18.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.18.0-cp27-cp27mu-manylinux1_x86_64.whl (40.4 MB view details)

Uploaded CPython 2.7mu

scipy-0.18.0-cp27-cp27mu-manylinux1_i686.whl (34.4 MB view details)

Uploaded CPython 2.7mu

scipy-0.18.0-cp27-cp27m-manylinux1_x86_64.whl (40.4 MB view details)

Uploaded CPython 2.7m

scipy-0.18.0-cp27-cp27m-manylinux1_i686.whl (34.4 MB view details)

Uploaded CPython 2.7m

scipy-0.18.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (21.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file scipy-0.18.0.zip.

File metadata

  • Download URL: scipy-0.18.0.zip
  • Upload date:
  • Size: 14.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.18.0.zip
Algorithm Hash digest
SHA256 a4f9fb8cddbe681e2d5465a8dcf715ef454b16fe8c9eddf92bffb10bb50ac75e
MD5 9ec1363dde2f2c16e833d3cd09f0dd13
BLAKE2b-256 5ea3d7241ac3921157e1f17569ad0591ed1966cacd3dc97c8abcf5807049e244

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0.tar.gz.

File metadata

  • Download URL: scipy-0.18.0.tar.gz
  • Upload date:
  • Size: 13.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.18.0.tar.gz
Algorithm Hash digest
SHA256 f01784fb1c2bc246d4211f2482ecf4369db5abaecb9d5afb9d94f6c59663286a
MD5 d70e7f533622ab705bc016dac328d93e
BLAKE2b-256 01a1dce70d47377d662aa4b0895df8431aee92cea6faefaab9dae21b0f901ded

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ab9db1de7140eaf602d4ba190bbbe07ca608d5d298203afbfeceb170a3f03ef4
MD5 8f28a30aba8dd7fa4c1704088347684e
BLAKE2b-256 44565844713f63e070478816225a4cdee82cffc409bb11997beab4dbd57d5ac6

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d71c4ac8019b5820acd881d1178461e4d900e8dcfe920f3b63faf9381db24a1c
MD5 1bdc3664de8456bbc45620afbfc3d2cf
BLAKE2b-256 ce43ada3ac7261cc2625683361fd7e5c0d1637b50076c518519088c3d857d005

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5ed943f23f7553c34aec6444a3f929b9eccb0f330b7b4416a3132dd0c4c1068f
MD5 3886c82aa705b44662964d5d1de179b8
BLAKE2b-256 bd8f0e0fb2b991290727de18b9623c7c32217d0d5d67f436cfd79fa7a0487db5

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1709f0696508047742a80c5f3c7699c7bd28f006cbbe4d2b001ed6ee9fc862a8
MD5 d8b88298b048884225708494bc51f249
BLAKE2b-256 2b363876b40c75a8d374f80925f9f9f246893d4a1d99f1aada281e14f9e2901f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 41252b1083e657be1beb391c8508fc70298cc3c47214d7b874e5b50e2676229e
MD5 6e7bcd119bfcd3504f5d432424779fd2
BLAKE2b-256 3264e492c39084f802e35272e962487e9cc988efa8a8348aa8768920bd21a123

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 61441deb6c9ff093c60b48362a2104fa22212bb8baa09b62643f71df3f1fd361
MD5 aec151bd64fee0651dc804f8b57a1948
BLAKE2b-256 6a3165ae90597cd31d20ee179a5351fafb4f698ceb335624b96468ae7dfc4b28

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7b77d7721a2017fe6fe2369edf6631c1cb4d2665f7a0e0562ed3796e8d8007d4
MD5 96f1e6ac2ed3a845802050840929681a
BLAKE2b-256 fc729403ced8a4700b031cc32a12f5711bbb5f7491fb01a2e48030a0dc1acddc

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 919c035bfd63a8ecd9076e46488108db0847a13ff7bb3e2eb52561af68ffb798
MD5 3426dd5731fcdb9f56ee30623def9ac0
BLAKE2b-256 c169f8cd2bb643bda807b5555a3c607835569e7203f165178631a7e593392ee3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b10ccbb451d781f5a31bce940150c626260369c31dc7c6cc609c012aae5b8b77
MD5 ccca6aeb87717ca383a15e1d3cd3b3e9
BLAKE2b-256 b3463aecb4feaa2ef3c4071a9a853a35a2695f7677ebc7731c3cb3d291c6d188

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f1ce34715420670253aef746ca9ac0de6af0db975bc2f7145697b227ed43a411
MD5 f203cdea575c4e5d9c11f88480e609c4
BLAKE2b-256 5eff4477dd1cab2f54cce793de662d6546d4ccd4ca2f1795dab46ec983fa9082

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.18.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.18.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c1357a8d7da900f3eb72c817a554fa82f71a123d232c1d28c4ef5624694ec937
MD5 e9ddb97336421e110a3f20e1b1f6c057
BLAKE2b-256 d423d8d12a7b23ffe7915ed23ac3aa85347edab9fca97e4c8c5d7f18b9cdd5b1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page