Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-0.19.0.zip (15.3 MB view details)

Uploaded Source

Built Distributions

scipy-0.19.0-cp36-cp36m-manylinux1_x86_64.whl (48.2 MB view details)

Uploaded CPython 3.6m

scipy-0.19.0-cp36-cp36m-manylinux1_i686.whl (41.1 MB view details)

Uploaded CPython 3.6m

scipy-0.19.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.2 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.19.0-cp35-cp35m-manylinux1_x86_64.whl (47.9 MB view details)

Uploaded CPython 3.5m

scipy-0.19.0-cp35-cp35m-manylinux1_i686.whl (40.8 MB view details)

Uploaded CPython 3.5m

scipy-0.19.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.19.0-cp34-cp34m-manylinux1_x86_64.whl (45.8 MB view details)

Uploaded CPython 3.4m

scipy-0.19.0-cp34-cp34m-manylinux1_i686.whl (39.2 MB view details)

Uploaded CPython 3.4m

scipy-0.19.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.19.0-cp27-cp27mu-manylinux1_x86_64.whl (45.0 MB view details)

Uploaded CPython 2.7mu

scipy-0.19.0-cp27-cp27mu-manylinux1_i686.whl (38.4 MB view details)

Uploaded CPython 2.7mu

scipy-0.19.0-cp27-cp27m-manylinux1_x86_64.whl (45.0 MB view details)

Uploaded CPython 2.7m

scipy-0.19.0-cp27-cp27m-manylinux1_i686.whl (38.4 MB view details)

Uploaded CPython 2.7m

scipy-0.19.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.2 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file scipy-0.19.0.zip.

File metadata

  • Download URL: scipy-0.19.0.zip
  • Upload date:
  • Size: 15.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.19.0.zip
Algorithm Hash digest
SHA256 4190d34bf9a09626cd42100bbb12e3d96b2daf1a8a3244e991263eb693732122
MD5 91b8396231eec780222a57703d3ec550
BLAKE2b-256 e5939a8290e7eb5d4f7cb53b9a7ad7b92b9827ecceaddfd04c2a83f195d8767d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f5a3a7dcbeb345c227770029870aeb547a3c207a6cbc0106d6157139fd0c23e9
MD5 3cbb30615496fbbf9b52c9a643c6fe5e
BLAKE2b-256 d07b415fd5bb215f28b423d32dc98126f700ebe7f1efa53e65377ed6ed55df99

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 47f537214293a5d74b05d217afa49b582b7fd9428ec9ea64be69210cfc56611a
MD5 83f0750862c80a659686797d4ec9bca0
BLAKE2b-256 bff21dc85bfbbbf96faf2340a807285cf3f742eb0037fe2558b5ea3572fa76b6

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e1c45905f550b5f14e1f47697c92bab5c1e6ba77da5a441bd2affa4621c41b26
MD5 81685a961d6118459b7787e8465c8d36
BLAKE2b-256 355c88a2f023cbadf3d84520cc9c3bffa0da93480a08f28a4d07f2a5543c71a9

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1bcf71f2e534a1aabf9f075700701bf3af434120b1b114dfa4723d02e076ed1f
MD5 60741a900a145eb924ec861ec2743582
BLAKE2b-256 20970d5d86f38bba887a3b2b40c69977c334ecfff2c475d1e29491047c90538a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0496f2b204a63cde3797e5452bf671ee25afc11bd9489ae69cd4dccee13083a1
MD5 ff8e652b5e918b276793f1ce542a5959
BLAKE2b-256 3a4ff1b7401773e8a8c119400fe4f67b0c25ee5ce7b1d7672c8cdab2dd9a63f3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 57f7be33f1009ad6199132e8a7e5d4c9727224680d8cbc4596a2a8935a86f96b
MD5 4cda63dc7b73bd03bdf9e8ebc6027526
BLAKE2b-256 072fa21e12fecad483b9b624dca1dc6802822519b9325f46c58d829e4f9e1ddd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4b2731a191dfa48a05b2f5bc18881595a1418092092ecdd8d3feab80f72adc96
MD5 ed27be5380e0aaf0229adf747e760f8c
BLAKE2b-256 65ab86c8f34f336d5a28e5f0f1d53438de58a0177eedfc3890d889b6f5f53442

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2e70ded029d51f6a48d4b2a154f583b85aa2e3290dfd71e0b6bbcfe9454cffdd
MD5 a90148fec477c1950578b40a1197509f
BLAKE2b-256 bdfb79fa65e6a583d0cce42dd2c8ba104db440e6f25ca706588d97e81d4c9d5e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 663e78bfa197376547424aff9fb5009e7b2f26855ee5aaf1a2ddbb2f4dc6af3b
MD5 d568c9f60683c33b81ebc1c39eea198a
BLAKE2b-256 ba8ac3f53e4afd4bc296b86fc90e2bd5c73673442763fcfa0155b1f70ce2b5f9

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4147b97709e75822e73d312e4d262410baafa961a7b11649a7b4b7c2d41fb4fe
MD5 adfa1f5127a789165dfe9ff140ec0d6e
BLAKE2b-256 eb7e27b3b9e26cb64e081799546a756059baf285eb886a771e9d26743876ccbb

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fa67bbb0a3225fcd8610d693e7b2ca08fda107359e48229f7b83593bbb70cc97
MD5 a2669158cf847856d292b8a60cdaa170
BLAKE2b-256 88557344997a3fec322a774e9d418db36a01ab6c1eb95a54e69babdfba07f1a2

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eabdfde8276007e9aec9a400f9528645001a30f7d78b04a0ab215183d9523e2a
MD5 0e49f7fc8d31c1c79f0a4d63b29e8a1f
BLAKE2b-256 ae9428ca6f9311e2351bb68da41ff8c1bc8f82bb82791f2ecd34efa953e60576

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3c34987ee52fd98b34f2e4a6d277b452d49056f1383550acc54c5bab408a194c
MD5 08809612b46e660e567e3272ec11c808
BLAKE2b-256 74d2dd67138a84d499025a8f6b412517fe4a73e9561b35fc09e9f8b9c59e3403

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 517a85600d6574fef1a67e6d2001b847c27c8bfd136f7a12879c3f91e7bb291f
MD5 dde4d5d44a0274a5abb01be4a3cd486a
BLAKE2b-256 72ebd398b9f63ee936575edc62520477d6c2353ed013bacd656bd0c8bc1d0fa7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page