Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-0.19.1.tar.gz (14.1 MB view details)

Uploaded Source

Built Distributions

scipy-0.19.1-cp36-cp36m-manylinux1_x86_64.whl (48.2 MB view details)

Uploaded CPython 3.6m

scipy-0.19.1-cp36-cp36m-manylinux1_i686.whl (41.1 MB view details)

Uploaded CPython 3.6m

scipy-0.19.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.2 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.19.1-cp35-cp35m-manylinux1_x86_64.whl (47.9 MB view details)

Uploaded CPython 3.5m

scipy-0.19.1-cp35-cp35m-manylinux1_i686.whl (40.8 MB view details)

Uploaded CPython 3.5m

scipy-0.19.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.19.1-cp34-cp34m-manylinux1_x86_64.whl (45.8 MB view details)

Uploaded CPython 3.4m

scipy-0.19.1-cp34-cp34m-manylinux1_i686.whl (39.1 MB view details)

Uploaded CPython 3.4m

scipy-0.19.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scipy-0.19.1-cp27-cp27mu-manylinux1_x86_64.whl (45.0 MB view details)

Uploaded CPython 2.7mu

scipy-0.19.1-cp27-cp27mu-manylinux1_i686.whl (38.4 MB view details)

Uploaded CPython 2.7mu

scipy-0.19.1-cp27-cp27m-manylinux1_x86_64.whl (45.0 MB view details)

Uploaded CPython 2.7m

scipy-0.19.1-cp27-cp27m-manylinux1_i686.whl (38.4 MB view details)

Uploaded CPython 2.7m

scipy-0.19.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.2 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file scipy-0.19.1.tar.gz.

File metadata

  • Download URL: scipy-0.19.1.tar.gz
  • Upload date:
  • Size: 14.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-0.19.1.tar.gz
Algorithm Hash digest
SHA256 a19a2ca7a7336495ec180adeaa0dfdcf41e96dbbee90d51c3ed828ba570884e6
MD5 6b4d91b62f1926282b127194a06b72b3
BLAKE2b-256 5267d9ef9b5058d4a9e3f0ae641ec151790622cbeb37f157de5773358e2bf3da

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4de84e3870228e8afd55a6e63e762aa7c9d1e3bd9a9ef5ab716835a69c77d257
MD5 65b1667ac56861da4cbc609960ed735b
BLAKE2b-256 0e46da8d7166102d29695330f7c0b912955498542988542c0d2ae3ea0389c68d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 909be30bdd1d8cd57609760ea72a1499543169ed6ea5c66fad50946582682cf8
MD5 458615e9a56429a72038531dd5dcb3cb
BLAKE2b-256 9b4aeaf906fab762e85590678ffc1e220b4c697325cf5eac0c2e9d79a026afbd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2a3b6ceadbb58d8b8d4a329f8219f9e6f17757ec6c85baf03987bbd2b728c263
MD5 fc2e4679e83590ff19c1a5c5b1aa4786
BLAKE2b-256 5c815a40e4abcbd0c303e002d1e1fa15fefadcc2bb1b8d28e49e12a01f5f1a5a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4c26ef44e8bb2cd2aef11c60d163caa04670d6f42996789b209526677310ded2
MD5 e7167c0a9cf270f89437e2fd09731636
BLAKE2b-256 a7a5447e56abc3854a343c2f01c8fb274570057bc2550b71bd5134a264d4251e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4118647273c907ed984da52b71fa2bbb30229f1820fb79b1ed087c8bc9a20cca
MD5 d6c2ecadd4df36eb61870227fae42d3a
BLAKE2b-256 70e9e61b0855638d341dfea5a6cea7cfeb08d1e8b7fe7bb6060ec15fcb5815ec

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 93825cc80c638d901099f657dfff852ad2421beb51cb7d1d3f91157741ebe287
MD5 602a741a54190e16698ff8b2fe9fd27c
BLAKE2b-256 758863dd10deab739027163b2f034faedd189da728d8010ad2aaef6d527c7286

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2dc9bcfaa585d9d941fb1add0d160556fe8587c3800264a77643695565a2d279
MD5 79c0ba3618466614744de9a2f5362bbc
BLAKE2b-256 5e353ecc16e083ed82a0a234a27a9d77d817c0abab0db43eb31a451bded3b49d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b87a923ed390ba0aafcbbcc6f0e023d495f19d2bd22ae59bdef3b0aec6485b39
MD5 9c02cdd79e4ffadddcce7b2212039816
BLAKE2b-256 23fc57fb7cd7d8869b6457faeaf329c47c3630ba0d0875d4b40b79d1602d23fa

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2c9e87d556b83a8e11de7a064856c3997bbaff7f9cf62bf63ff0623751549e4c
MD5 5ba945b3404644244ab469883a1723f0
BLAKE2b-256 be3140391528eb94e7686d1075a28fb80e45962cc0eaa6843d1a5c8677dab3af

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 78713101b32af384c564837fd7ae665a2a72cb6d49edbd8f32148d74724a65a8
MD5 afbf8ffb4a4fe7c18e34cb8a313c18ee
BLAKE2b-256 8e43a7b400e7ea07220fb419f0669ff17f5ef71653cf32827315224bc9dda9d4

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b3e97be2cd9f052d984fc5ba2d441897971b744c64d658617944c47bc366f8ff
MD5 906c3c59209d6249b5d8ce14cfa01382
BLAKE2b-256 a26b814afdf98fed9defaec70052e29a7d10eb992bcabb01098677e361846a7a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2a26d06a642e3c9107ca06df125f5dc5507abe2b87fd7865415d03ab654b0b43
MD5 f513eb4ea2086de169a502df7efb91c7
BLAKE2b-256 74182bd4719bcd359121a4ea56b833b1fc2cc2d3ddea8cb2699bbebae72bda18

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 023ee29faa76c184a607e21076f097dc32f3abba7c71ece374588f95920aa993
MD5 e0022540df2735eb0475071b266d5d71
BLAKE2b-256 2f11fa97aa5ff90b7b2f5988f64c2502a805bb6083f56b45fca27e93420f3574

See more details on using hashes here.

Provenance

File details

Details for the file scipy-0.19.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-0.19.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1e8fedf602859b541ebae78667ccfc53158edef58d9ee19ee659309004565952
MD5 72415e8da753eea97eb9820602931cb5
BLAKE2b-256 6368c5098f3b6034e69d187e3f2e989f462143d9f8b524f5a4f9e13c4a6f5f47

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page