Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.10.0.tar.gz (42.4 MB view details)

Uploaded Source

Built Distributions

scipy-1.10.0-cp311-cp311-win_amd64.whl (42.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.10.0-cp311-cp311-macosx_12_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.10.0-cp311-cp311-macosx_10_15_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

scipy-1.10.0-cp310-cp310-win_amd64.whl (42.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.10.0-cp310-cp310-macosx_12_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.10.0-cp310-cp310-macosx_10_15_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

scipy-1.10.0-cp39-cp39-win_amd64.whl (42.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.10.0-cp39-cp39-macosx_12_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.10.0-cp39-cp39-macosx_10_15_x86_64.whl (35.2 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

scipy-1.10.0-cp38-cp38-win_amd64.whl (42.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

scipy-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scipy-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scipy-1.10.0-cp38-cp38-macosx_12_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scipy-1.10.0-cp38-cp38-macosx_10_15_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file scipy-1.10.0.tar.gz.

File metadata

  • Download URL: scipy-1.10.0.tar.gz
  • Upload date:
  • Size: 42.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0.tar.gz
Algorithm Hash digest
SHA256 c8b3cbc636a87a89b770c6afc999baa6bcbb01691b5ccbbc1b1791c7c0a07540
MD5 1ead70deead972701d27b8e01ee9fbc9
BLAKE2b-256 d6bd2d13a273d95f7b7d9903c906c486040b0aebb85e008f93a5dd0891f21f1f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 42.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6faf86ef7717891195ae0537e48da7524d30bc3b828b30c9b115d04ea42f076f
MD5 e45b177fed02276cc15b9ed96b431245
BLAKE2b-256 c3c48efe05b8ee86c7276448ef54f71ddb194416b881bc7a0d3c353279eea6aa

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ad449db4e0820e4b42baccefc98ec772ad7818dcbc9e28b85aa05a536b0f1a2
MD5 c90817ec7ca6be7765fcd32ece3e9ca9
BLAKE2b-256 dab803dae1cd4fa687d84cd60513aef17efecf7c277bc771bb96a1d8780dd734

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4df25a28bd22c990b22129d3c637fd5c3be4b7c94f975dca909d8bab3309b694
MD5 e9affa2d46ce7fe0026a6fde2bf73769
BLAKE2b-256 d580b23382de9c50509afd151d6876dca33cafef2237a36f74ac7f3bfc327fc2

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e096b062d2efdea57f972d232358cb068413dc54eec4f24158bcbb5cb8bddfd8
MD5 697844d97d240c3ff6b7737c80d63c4b
BLAKE2b-256 fcc9a58b6c6ade3e80f76b134632fad491438b78c844ee54e590c7b842cb9de3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 42ab8b9e7dc1ebe248e55f54eea5307b6ab15011a7883367af48dd781d1312e4
MD5 4b073fd8a5581bb73387c4cf676ea0c0
BLAKE2b-256 7a2313579b64ab458782a43e11e1ad095488458b8df099063ae07773666adada

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 42.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 27e548276b5a88b51212b61f6dda49a24acf5d770dff940bd372b3f7ced8c6c2
MD5 e24bb62e244d953bc6af73948ec68e09
BLAKE2b-256 ec97719e7c5b5081524b056652eec1e31c08a54f262f00dae62089094bde66b3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f9ea0a37aca111a407cb98aa4e8dfde6e5d9333bae06dfa5d938d14c80bb5c3
MD5 f220d2b835007a650954827ba0c22cb1
BLAKE2b-256 7622287d06df9b359ba6df3f986e83267f240132379e4181c43cead3c5d41227

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 151f066fe7d6653c3ffefd489497b8fa66d7316e3e0d0c0f7ff6acca1b802809
MD5 d97ed41311b9b5b45a75fb0bdd8d3099
BLAKE2b-256 5f121f00e9b92ae6feb2da0d0ef1d1c5672903fc7f18e1c53123b69ebd65ecef

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 16ba05d3d1b9f2141004f3f36888e05894a525960b07f4c2bfc0456b955a00be
MD5 97ba0c6a34714fb1a1cab1674fb7d36e
BLAKE2b-256 5ee3ac8daa4adf427ef0f9913350e74b985ecd838ad32eafc3aa844f0760e839

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b901b423c91281a974f6cd1c36f5c6c523e665b5a6d5e80fcb2334e14670eefd
MD5 c6e0823b4affcd42dd7da358bba1b1c7
BLAKE2b-256 454e250f55436fe2cec3db808ca6befa16d294935a21ed2b9dc03d0238ead769

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 42.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 954ff69d2d1bf666b794c1d7216e0a746c9d9289096a64ab3355a17c7c59db54
MD5 64a1e6ad30d823edabec80afc449ca4c
BLAKE2b-256 b5166261fb37606565833f7437692e57edd1f29f3e9dd3f3873720a2d25558b0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0490dc499fe23e4be35b8b6dd1e60a4a34f0c4adb30ac671e6332446b3cbbb5a
MD5 a3e779699c69e55cbf0e4b6a9d01f932
BLAKE2b-256 3071bb9e677e30c52f938ff71ba528915c579e794ac0f59804e06bfed3596dff

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 441cab2166607c82e6d7a8683779cb89ba0f475b983c7e4ab88f3668e268c143
MD5 36b70efcd52dce2d32982421ab392c52
BLAKE2b-256 f3c716537a3e7178a08329d455d7b1c6f43177034e708a0c2517f9e308560019

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6e4497e5142f325a5423ff5fda2fff5b5d953da028637ff7c704378c8c284ea7
MD5 22938dd0de0040822aa11801dbba0cc0
BLAKE2b-256 2b547536dbfcbea26ca2c11d3c55b0c2d806d4349b5852318e12b98ffee27bd8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3afcbddb4488ac950ce1147e7580178b333a29cd43524c689b2e3543a080a2c8
MD5 4efc392dc86cdb06032b991eceb42e67
BLAKE2b-256 9f31c78e7c54a62bd986051c76e18ca38dc962fdf4e4078485d4307d61339dc7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 42.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9b878c671655864af59c108c20e4da1e796154bd78c0ed6bb02bc41c84625686
MD5 8711bc3604df084c70b063a4eaeed31d
BLAKE2b-256 f017c26457e774951eb145db3eb69f9896d05a47900023e4e90c11d3e4cd7972

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5cd7a30970c29d9768a7164f564d1fbf2842bfc77b7d114a99bc32703ce0bf48
MD5 ba00812f1ea4f23dc56c6d6ded111172
BLAKE2b-256 d99ced263f84bb54ce0a4b0774f8ef21b45a70d54196a1b4bca9bb7a3c837437

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ab2a58064836632e2cec31ca197d3695c86b066bc4818052b3f5381bfd2a728
MD5 1cd7759e494085d36113122d2fcaffb1
BLAKE2b-256 7444694d9472d7edade2d95ace485740d00ec3621a53339650e8005ce25a9bc9

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 38bfbd18dcc69eeb589811e77fae552fa923067fdfbb2e171c9eac749885f210
MD5 fc626bad92361c25d8cde7d5ac79646a
BLAKE2b-256 3c853aa622ec7fd2efb41a59eacb4d503214d71e7c84a59caffe083599c51963

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.10.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4bd0e3278126bc882d10414436e58fa3f1eca0aa88b534fcbf80ed47e854f46c
MD5 8c3be7f6ba19505a5ba77c76f85da163
BLAKE2b-256 a30558699e7030b03ca34be52ba03d3f9403dc419b07fce6bdeb8bea09cf3fb0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page