Skip to main content

Fundamental algorithms for scientific computing in Python

Reason this release was yanked:

License Violation

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.11.0.tar.gz (56.0 MB view details)

Uploaded Source

Built Distributions

scipy-1.11.0-cp311-cp311-win_amd64.whl (43.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.11.0-cp311-cp311-macosx_12_0_arm64.whl (29.5 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl (37.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.11.0-cp310-cp310-win_amd64.whl (44.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.11.0-cp310-cp310-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl (37.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.11.0-cp39-cp39-win_amd64.whl (44.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.11.0-cp39-cp39-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl (37.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.11.0.tar.gz.

File metadata

  • Download URL: scipy-1.11.0.tar.gz
  • Upload date:
  • Size: 56.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.0.tar.gz
Algorithm Hash digest
SHA256 f9b0248cb9d08eead44cde47cbf6339f1e9aa0dfde28f5fb27950743e317bd5d
MD5 f7d44ebcd754fa043f360e61f4667a93
BLAKE2b-256 fad0724c8204f87b6f807e3e67de32b8b4922d579154a448ce94e89129064bf1

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 43.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6302c7cba5bf99c901653ff158746625526cc438f058bce41514d7469b79b2c3
MD5 27c316567f161bcb7ada3d29bbde9654
BLAKE2b-256 cce30b0dbdba0dc487161214fed41170f80c1e152c3bb6fd8e7fba014840fe5e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 80015b8928f91bd40377b2b1010ba2e09b03680cbfc291208740494aeb8debf2
MD5 f5073b9be9340dca338f976815152856
BLAKE2b-256 e030209e1065405819ec3c4da1d2c0b0ac7b1b17c86888604b8971249afc89d1

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ccc70892ea674f93183c5c4139557b611e42f644dd755da4b19ca974ab770672
MD5 194b8c543317ac76d66d8749bfb3369d
BLAKE2b-256 2710985c0902929a424c8e0483f16ee54f92fc5e4fa07fbd83a36f3aa469b3fe

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d8e631c3c49c24f30828580b8126fe3be5cca5409dad5b797418a5b8965eeafa
MD5 2571f72f5201e21159bbda8a8dae1e93
BLAKE2b-256 dc4b5e10e8b69cce946c29c2795188cd366571ca83987cbf652d795995d0a9a4

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 586608ea35206257d4e0ce6f154a6cfef71723b2c1f6d40de5e0b0e8a81cd2ff
MD5 a688e493c21988c8cf0d9e60ce3626c2
BLAKE2b-256 3ec1e3072fa102974a0a89e34da19b863c97affa8a13ac00a1577771553c3d6b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a92bd3cd4acad2e0e0b360176d5ec68b100983c8145add8a8233acddf4e5fcc
MD5 84acd19566f9f751976f9dfe8f15e51e
BLAKE2b-256 2fb5b5387cdafc66805907424c3a95f773b84a5d452a0925801c6218727a766e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 44.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 894ced9a2cdb050ff5e392f274617af46dca896d5c9112fa4a2019929554d321
MD5 c50ee3e1cee0be728011e9037e937902
BLAKE2b-256 74a3eb008e104a30a5e743bf6d68df1497e2d4a8b98103731f9948bf8ca18e3a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ebf4b2ea26d50312731ddba2406389c5ddcbff9d777cf3277ea11decc81e5dfb
MD5 6d0e634ea2f149796e476bb9b36253c7
BLAKE2b-256 09762d056ac41718348690051a0793776e99f04d67f67a53741c0bd2987bb486

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a53f9cebcfda6158c241c35a559407a4ef6b8cb0863eb4144958fe0a0b7c3dae
MD5 05f1c21efd12b6c822e52f63a206c1a6
BLAKE2b-256 5a55ec296aa9399d00f5d6794b90d96b5cce5eeb46c62450173fedb2b3b7ef72

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c29bae479b17d85208dfdfc67e50d5944ee23211f236728aadde9b0b7c1c33e
MD5 bbab95fed977823e90fcc9c03986f389
BLAKE2b-256 fc1749b393887ab0d8df6ea1d5d0a55c13c87008510762b0f6d128cfd338416c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b269ed44e2e2e43611f2ae95ba551fd98abbdc1a7ea8268f72f75876982368c4
MD5 1a1e677bcc83418d3fd023d6499dd892
BLAKE2b-256 7208f9920eeedf4953a631d0087a6e80bb2e091cf51e6efb55ec638d838b4e92

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e4f14c11fbf825319dbd7f467639a241e7c956c34edb1e036ec7bb6271e4f7b
MD5 e19289220712b60f80c0335c2f980019
BLAKE2b-256 d93a215f6fe227de718f3fd3e4ad9a6644e67ec944850c14d794b5c3febe5a9b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 44.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fad4006248513528e0c496de295a9f4d2b65086cc0e388f748e7dbf49fa12760
MD5 c9a23bd3835728c1ac44951da26efbb1
BLAKE2b-256 f70f1a0cdaeb7733b5f625766f982b141bcc633945dec935b7ddc95faedb26cf

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6666a1e31b2123a077f0dc7ab1053e36479cfd457fb9f5c367e7198505c6607a
MD5 65ef7d505c1a5e3aeb09b39510c4400a
BLAKE2b-256 b70abf927bb38d500b4994ceafc90f85765dc51346f8c06edcd50874c4a2373d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83867a63515c4e3fce3272d81200dda614d70f4c3a22f047d84021bfe83d7929
MD5 98a2980d27f763fc73a2cd5e52c88647
BLAKE2b-256 77d5c17e175e85f49c94b241a2c2f5e0cf209f47eb85dd24ff0ccca0cb97f9f2

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0c9c160d117fe71cd2a12ef21cce8e0475ade2fd97c761ef327b9839089bd16
MD5 885dbc413e361fd8586f9d83853ba8b9
BLAKE2b-256 26191059cc56d5dbe48a33fddc2a55d626bd97abd61ab110072ff2a2171a16ae

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 684d44607eacd5dd367c7a9e76e922523fa9c0a7f2379a4d0fc4d70d751464cc
MD5 ddd9fd97969d9fd84c2b2562d45c39b3
BLAKE2b-256 8e57abb84e98739717743722708d4ace9f98c89c5170fd7ed814e5dbaeb814d7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c61ea63124da6a3cff38126426912cc86420898b4902a9bc5e5b6524547a6dcb
MD5 2447ab3cae5ab5c06a54b26433539a37
BLAKE2b-256 5a0f8b177bd358bb1d69f88eff7703d6946e9b8194be8a178de715a6c7dbeef7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page