Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.11.0rc1.tar.gz (56.0 MB view details)

Uploaded Source

Built Distributions

scipy-1.11.0rc1-cp311-cp311-win_amd64.whl (43.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.11.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.11.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.11.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.11.0rc1-cp311-cp311-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.11.0rc1-cp311-cp311-macosx_10_9_x86_64.whl (37.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.11.0rc1-cp310-cp310-win_amd64.whl (44.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.11.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl (36.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.11.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.11.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.11.0rc1-cp310-cp310-macosx_12_0_arm64.whl (29.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.11.0rc1-cp310-cp310-macosx_10_9_x86_64.whl (37.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.11.0rc1-cp39-cp39-win_amd64.whl (44.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.11.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl (37.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.11.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.11.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.11.0rc1-cp39-cp39-macosx_12_0_arm64.whl (29.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.11.0rc1-cp39-cp39-macosx_10_9_x86_64.whl (37.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.11.0rc1.tar.gz.

File metadata

  • Download URL: scipy-1.11.0rc1.tar.gz
  • Upload date:
  • Size: 56.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.0rc1.tar.gz
Algorithm Hash digest
SHA256 312420789955c875a0126c0f1f949a14c1b2e4807d0a3aff6ebe598d5760e051
MD5 9c5d156562eb22c6055ca88fd50e788b
BLAKE2b-256 8c9561cf1d8453b2de242991b5371b31d51d53dde38dc99b9b43c0d2b1933fac

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7e253e5bb847cc960fc3c4b87540992f080f9adfcb1fcc665d53824bff002313
MD5 cfc7677956f7047e114773e613bb095a
BLAKE2b-256 e23c3ba4bff95b3c010b4df961113e16191a0bfcd4ea3df59361458ec8340c96

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 83ac6f81fa280f6345b43abf420edba28ea018b2465644363c876b6f5b3341d6
MD5 7ef189b73d378f5884972f17419db667
BLAKE2b-256 ee39342bc14fc90d69de59e242b4e1f1e3f6717397ddf10eba3e8eb4c8702787

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25ca2bdb8c6b26f52412ce90d090b4d5a8c7ee5747f8c6ac1c9f587dfaa95b08
MD5 c600df2b135036f1487574b97bd221c2
BLAKE2b-256 dc50ffd3499d509b904b3cbbe3cd7678935273e751737766a1b51f50286eec8a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe2126c03b53bac3fd0c8738e25363d07643cbca48553c5603c9a546fb060807
MD5 7568bf2af231bbe31a0f1dd7d8a813bc
BLAKE2b-256 ca7757c1f40f159ac59fe3edcdded874935156ce7bceb8baf7ad426189b1cc51

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 88d0623211e5e54032850e69a9d3d0953f8e66b277a3fde7a0774f7636e75cdd
MD5 6c115f4d6c6251d039a8070b7a325dc3
BLAKE2b-256 2ec202acb59093241dba69a5868d9dcfa6108f14f7dc878dfa1a2eac1c80a012

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5aa15f2fb3198c1bd2ece26f60961e1c655126b5c041c901f5c5fc2349e32ece
MD5 1be28299f03aec0bcffca33efb2f89d6
BLAKE2b-256 1570742b1216395085beedd5b61f13e4935f1065189c7dceab266a33994be423

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f80d63babab3297f551b03d152f5b0cbf1505b7d4551c23f63b72e7379373e2c
MD5 567fe0f57987a13d17a2e3931325b610
BLAKE2b-256 7ce380ce5306a2f9057a116d9a94a0681fc063f866bc64f11fd2978d56ed5e25

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eb1514f6cfb843bf9656b8dbb62310a52773154a1f01cad389253f96b67786ab
MD5 bb304a8f0552b48961dcedd68f05327a
BLAKE2b-256 5ea2cb177defa5dec8f2738df4aab7153dcf70b44f8e9d27022522e10da25d09

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57f1d0ccbbf8905eda3bf454c9db49679d266e1a7c16038f5d6a630bff7ebb58
MD5 6c387a913b3d31426f07bff17e387632
BLAKE2b-256 ee9b232e4f95538339e261bc203b1c19817fa3a2e6f4ae29805ed32f1a9aa37b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79b199b9f5b7b1fe7f187dd2922f5ba062ccbbeec82cf2a19cd763325d6b2fe3
MD5 9a9415fceaa652c8bf177d295a55e297
BLAKE2b-256 41703b46cd1620e6d1be251618f34d610dfb84e94035a1709e9ed609a457ba7b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 73df607643dc8c17228d2bc540473d3dbd09243402d873ec0c3e9b4b1906a27c
MD5 e349f12d38103766cdc553bc89d24baa
BLAKE2b-256 a97507ab78e9e6bc4f461eb4fea6e709ff104471f134aa7f5a507cf6ba7046d3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af1d5b71b21f1afc0de0d166a16038587c498b691f8243e5749792f2617fd651
MD5 48eb17dc8029652ca5bc231a065b756d
BLAKE2b-256 d9f9efc340458c444b697a8fc2327fd66e998319fc7d2f6e44d41e889cc9c8fb

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.0rc1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 44.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 353c993b9caf969182f113729375e2b5573bee77fad7b8afa7ea494dc6bb90b7
MD5 23f5a7bd87be8468ca5a6bc818d00d98
BLAKE2b-256 7bd55d2332ff4f103dd2e03173bdfe1ba81e96fde916a34463dbd70137621a56

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3194b3ff1c5f0b7592e814307702f25f00ab457c6d553b609fc3237e48b6a42b
MD5 545669f5ab0870e988ba8571e8f63b22
BLAKE2b-256 d664210f6ba55433fcd9609b403100c6230d03f04f3680ec23f46dbe19a3db2b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c74ce6155c495e9939569842064e994d72b352bc6cfcfa319753d94dffd16c6
MD5 f3a6629754ace648f620ddaf41c8d3b8
BLAKE2b-256 2bf3d8e1860f67fbc2c0967f9d5465abf8aa4a9c85cf7d2d38d8bbae9d732d61

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82d3ae9098e05be8f2b0092dff62f73694afb82677df57fa1b3531d3fd318929
MD5 ad508631e6ab18ca3279c73fb8f9366d
BLAKE2b-256 59bc170861a6f74a82c7a286114b1b0e0535afbfe7d5f85eadcb7b0ca6f2368b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 031b9e45972f370ef9f9b5e1d9879b8cc339ea3637a9a1ea83d4dd53b1bfa3ce
MD5 83cce680d96c9e4576adbefc4a1e899f
BLAKE2b-256 93faa07f072e0fdb537bddc8628b6786c44111bfcabbd5432c1286032447f95a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba6a6ddf6b0fed76560b5124f570473135bfd66cfd77655cb859dfdb334d4bc0
MD5 14796c59e99fb809405bcee3f6210eeb
BLAKE2b-256 47a50084ab8d40978b7c1203a0b35000e1dbd034f2fd20940efce9361abaa69b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page