Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.11.0rc2.tar.gz (56.0 MB view details)

Uploaded Source

Built Distributions

scipy-1.11.0rc2-cp311-cp311-win_amd64.whl (43.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.11.0rc2-cp311-cp311-musllinux_1_1_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.11.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.11.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.11.0rc2-cp311-cp311-macosx_12_0_arm64.whl (29.5 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.11.0rc2-cp311-cp311-macosx_10_9_x86_64.whl (37.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.11.0rc2-cp310-cp310-win_amd64.whl (44.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.11.0rc2-cp310-cp310-musllinux_1_1_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.11.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.11.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.11.0rc2-cp310-cp310-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.11.0rc2-cp310-cp310-macosx_10_9_x86_64.whl (37.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.11.0rc2-cp39-cp39-win_amd64.whl (44.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.11.0rc2-cp39-cp39-musllinux_1_1_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.11.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.11.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.11.0rc2-cp39-cp39-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.11.0rc2-cp39-cp39-macosx_10_9_x86_64.whl (37.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.11.0rc2.tar.gz.

File metadata

  • Download URL: scipy-1.11.0rc2.tar.gz
  • Upload date:
  • Size: 56.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.0rc2.tar.gz
Algorithm Hash digest
SHA256 075a9ddf34460c1a06ba568e1ea7fa34f3719f03cd9fae8323a5af1d73addfd7
MD5 02d1ef3309bdc3b93e60766d43193800
BLAKE2b-256 8a56d9cc5fa64b8083d495bf1db0a2b10923acda3a105eca7f28765f47564be0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 83fccc5e2244c294e2af428199beb9f08ab30351426d2576e9955c41f4e03ef2
MD5 65a4850b0699076b6463b5dd789bc448
BLAKE2b-256 375ead5c84c03025abd6b6ae650b16fb061ca349c04910a95bd207649d1ba710

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe70b1dd3bd21edff0157e6aa37a4398a0e7523ba9e95936a5dcdf9f3e85dce2
MD5 d6c963b68fc4c3c53c1e9faa1a228e10
BLAKE2b-256 6ea7acdaef629e3af6006ac999436cf89644126d6cbec798457139664dd00c4f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20843b81437a9b00add64457bd811a4efb5b5320598f9f283ce73f568b082b07
MD5 5a25d78a23ab53a921c13aca2a0f0ebe
BLAKE2b-256 25bc126b18a4eb8a66a04af3045598754699a4a531bb46350b322225ea495684

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b766e4a033cf80941357ccf19dfd284cf343a6ea40d0eec4dfba6722ce31fd01
MD5 67105a0f9af6d2174d5d58f18e9c8d2c
BLAKE2b-256 0539277217962f8d6dd0118954be4e5b8d7ca7f4de234ca75489f870467c2c03

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 49a51820e0b1e80d54b6f7b12c71be5f8e4eb36ac15d9b1ced7024d45c7f7eb3
MD5 21ca3681f013123f67113552266881b2
BLAKE2b-256 d3800ade787c977edfc8cd39dd3823a94dc1ee19f147023f9a438f2b9003ec9c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d27d8a720ba25dd1a604c7ed01a8c38c62cf1b05f7df7346e8eab872a1def0b
MD5 551857b6f82511d32f6904623583d5a0
BLAKE2b-256 5cc8bd43b1d1a23adb0049df5c916593d458a986aa1addf8590c01af1cbba563

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 144387f5b586b80375b49d4cb8cf4f115a5c814c4b892d9720cd5d4d566dafac
MD5 eb6c1da3d5a0892d0fe003f71d1c5029
BLAKE2b-256 8abed5605a221c8f171177237a36b375ca03527ef2f63dcc96e81674c0090ba5

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c2f8f80863053c8c8a9f29723a5ea1ef7514c40a6313db28959de7f55dff83b9
MD5 ec1d4dc18567deaa371a78479040aabf
BLAKE2b-256 75b6cbead0ab2c10e516a572baa29daa4a85dcd958e00eadd3baeb2c3f2da345

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce5f5cedbbf1e899b0038f32e073d057e298b470423f11cdc5679113161b858c
MD5 796ae99a600f1594389a301631fa0761
BLAKE2b-256 2b16b319d231d5cb57ed4e5a4be3374aefedbc1edc569f05068c40af16dfa9fb

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f6ce9979f227844789bfa3a048a7d045937a06eb7020bdd6526715e9a6c9659
MD5 c9169d5df46322875abe3306c0ecbb61
BLAKE2b-256 20b8ee97c2e8bfba00ca9095adb0bfb5fa9f2ed95d57c640c4eb18a546a343ec

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 72b7eb68ee23e2c008e1b833c53af053a21a3feef210e0ec1bb92f1a67bb91f8
MD5 eb18c7b6809067567c8633eb9b6f3ebd
BLAKE2b-256 282fcf5878b9d3525c35c2edeb12a94b1e84cc3502b511c9ea79107f630de9d0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b1a958a506eebc5d545943d13be87b8f849aece43386d29fa1b6f0dded8af2f
MD5 b6466df9e39fc1243113edf1b8e7e422
BLAKE2b-256 9bc83f09998bff0a99b58ef7e548edf6f2bc3bfada6b15538dab7b58df81b143

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.0rc2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 44.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for scipy-1.11.0rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ac431e87465ebda0d93fd7dafe8125f66bb9797e7ead9f28f2ddd67ded8e5bda
MD5 d46978bdd7e2b331f158c454dffa5f85
BLAKE2b-256 6f58c5e000ae15232db1d36db5288f7909872a59687481251d0f2bad26b5fc3a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 af1ce978bb354bdfdb34eb086980a76f2bf3dd4569913b138ac90aba85fae897
MD5 e2308fea6e4731501a1c50e2c903b91d
BLAKE2b-256 85dc90f6bc93b51c970f489ee36a6e71118eb12b89a416588a24a808f86efedd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a918120e0ae3198a1470f714d88a7715952a84c62643b7a1164008d784a64cc7
MD5 86a4c3757f68451b181fb0e66ebf0ea3
BLAKE2b-256 4ffafc40251f769228ce4c74166cd6c1c9dc67a726d3ec178cf45ff8b39f4125

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da6d29593864c061f2869aa2e4842dffb0770daeae9f40d9edf4d05494910fc1
MD5 1fb512ccace43880693e9cae49ca9064
BLAKE2b-256 291f2291cdfc4c48e496caa6d0e0064b83fba75f4ac917ab61555e83878f7f73

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3f83431c41d83b139ad8787a61b6f9dd1604448338797796ae93ad4c41167da9
MD5 3ee0d3c64cba147462422a4ed663417f
BLAKE2b-256 d1ee98afac430ff2287500474a0e996b2d6962a109d78ee6dcc733fe3501a510

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.11.0rc2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1789cb4b837a0d08aff24bc1fbd25742dfc894cca13c32f16a93dceb2b3f3a1b
MD5 f589c26a207eb0d095eea50664495c2f
BLAKE2b-256 e8610460075b9c4b596bc0afd4eeda6a61c68047baffd952e1ecfbb565e42d47

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page