Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.12.0.tar.gz (56.8 MB view details)

Uploaded Source

Built Distributions

scipy-1.12.0-cp312-cp312-win_amd64.whl (45.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

scipy-1.12.0-cp312-cp312-musllinux_1_1_x86_64.whl (38.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

scipy-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scipy-1.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scipy-1.12.0-cp312-cp312-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scipy-1.12.0-cp312-cp312-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scipy-1.12.0-cp311-cp311-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.12.0-cp311-cp311-musllinux_1_1_x86_64.whl (38.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.12.0-cp311-cp311-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.12.0-cp310-cp310-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.12.0-cp310-cp310-musllinux_1_1_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.12.0-cp310-cp310-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.12.0-cp39-cp39-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.12.0-cp39-cp39-musllinux_1_1_x86_64.whl (38.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.12.0-cp39-cp39-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.12.0.tar.gz.

File metadata

  • Download URL: scipy-1.12.0.tar.gz
  • Upload date:
  • Size: 56.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.12.0.tar.gz
Algorithm Hash digest
SHA256 4bf5abab8a36d20193c698b0f1fc282c1d083c94723902c447e5d2f1780936a3
MD5 22683fcf9a411f0a5254b7509bea0a6b
BLAKE2b-256 3085cdbf2c3c460fe5aae812917866392068a88d02f07de0fe31ce738734c477

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: scipy-1.12.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 45.8 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.12.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e646d8571804a304e1da01040d21577685ce8e2db08ac58e543eaca063453e1c
MD5 6390f1298aa0f88c0e83a92d85a17deb
BLAKE2b-256 f33191a2a3c5eb85d2bfa86d7c98f2df5d77dcdefb3d80ca9f9037ad04393acf

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 95e5c750d55cf518c398a8240571b0e0782c2d5a703250872f36eaf737751338
MD5 dc47daeac90af7774778f178621be0e2
BLAKE2b-256 7e7f504b7b3834d8c9229831c6c58a44943e29a34004eeb34c7ff150add4e001

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7ebda398f86e56178c2fa94cad15bf457a218a54a35c2a7b4490b9f9cb2676c
MD5 49ff9a14b7752884cec16c7709e48b45
BLAKE2b-256 117d850bfe9462fff393130519eb54f97d43ad9c280ec4297b4cb98b7c2e96cd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c39f92041f490422924dfdb782527a4abddf4707616e07b021de33467f917bc
MD5 c59230ab714a5df34e614e3e71a63c96
BLAKE2b-256 dbfd81feac476e1ae495b51b8c3636aee1f50a1c5ca2a3557f5b0043d4e2fb02

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f7ce148dffcd64ade37b2df9315541f9adad6efcaa86866ee7dd5db0c8f041c3
MD5 574624372a61bef50322441b4073c252
BLAKE2b-256 71ba744bbdd65eb3fce1412dd4633fc425ad39e6b4068b5b158aee1cd3afeb54

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7e76cc48638228212c747ada851ef355c2bb5e7f939e10952bc504c11f4e372
MD5 fd9eecf7a42b6d0eacaf029f96a6bcbb
BLAKE2b-256 0d4ab2b2cae0c5dfd46361245a67102886ed7188805bdf7044e36fe838bbcf26

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.12.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.12.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a24024d45ce9a675c1fb8494e8e5244efea1c7a09c60beb1eeb80373d0fecc70
MD5 58a151c76b9b5355e9e51a126af9845a
BLAKE2b-256 9a255b30cb3efc9566f0ebeaeca1976150316353c17031ad7868ef46de5ab8dc

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8bee4993817e204d761dba10dbab0774ba5a8612e57e81319ea04d84945375ba
MD5 8867bd7ea936c896eabc30b97b4462cb
BLAKE2b-256 64e74dbb779d09d1cb757ddbe42cae7c4fe8270497566bb902138d637b04d88c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b8066bce124ee5531d12a74b617d9ac0ea59245246410e19bca549656d9a40a
MD5 87bc0cbe75653eee74832d9152d21837
BLAKE2b-256 d4b87169935f9a2ea9e274ad8c21d6133d492079e6ebc3fc69a915c2375616b0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c3003652496f6e7c387b1cf63f4bb720951cfa18907e998ea551e6de51a04467
MD5 556cd94056e0271f88f9d682400a14d7
BLAKE2b-256 e3c5d40abc1a857c1c6519e1a4e096d6aee86861eddac019fb736b6af8a58d25

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5adfad5dbf0163397beb4aca679187d24aec085343755fcdbdeb32b3679f254c
MD5 56876fe7421dff78cceeb9593065f022
BLAKE2b-256 21d4e6c57acc61e59cd46acca27af1f400094d5dee218e372cc604b8162b97cb

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 408c68423f9de16cb9e602528be4ce0d6312b05001f3de61fe9ec8b1263cad08
MD5 fd3874054dea07b81027e7f560b5c9c0
BLAKE2b-256 c3327915195ca4643508fe9730691eaed57b879646279572b10b02bdadf165c5

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 75ea2a144096b5e39402e2ff53a36fecfd3b960d786b7efd3c180e29c39e53f2
MD5 b8e5b38c6f6d1279e03b2119d6663d6f
BLAKE2b-256 fda75f829b100d208c85163aecba93faf01d088d944fc91585338751d812f1e4

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4c1020cad92772bf44b8e4cdabc1df5d87376cb219742549ef69fc9fd86282dd
MD5 d8eef299b1cfaf73976c5fcb1cca971e
BLAKE2b-256 659e43b86ec57ecdc9931b43aaf727f9d71743bfd06bdddfd441165bd3d8c6be

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e32847e08da8d895ce09d108a494d9eb78974cf6de23063f93306a3e419960c
MD5 0602aa75e264aa0372a6598bb737da5d
BLAKE2b-256 f5aa8e6071a5e4dca4ec68b5b22e4991ee74c59c5d372112b9c236ec1faff57d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e53958531a7c695ff66c2e7bb7b79560ffdc562e2051644c5576c39ff8efb563
MD5 985d8d6da5137a9226dfcdd21e734218
BLAKE2b-256 691d0582401b6d77865e080c90f39e52f65ca2bdc94e668e0bfbed8977dae3f4

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f5f00ebaf8de24d14b8449981a2842d404152774c1a1d880c901bf454cb8e2a1
MD5 f8c800850198cbad805e02fc2ea38c03
BLAKE2b-256 dd14549fd7066a112c4bdf1cc11228d11284bc784ea09124fc4d663f28815564

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78e4402e140879387187f7f25d91cc592b3501a2e51dfb320f48dfb73565f10b
MD5 3fcb8c36cde56efb2e32e272c46afb22
BLAKE2b-256 c7d9214971dae573bd7e9303b56d2612dae439decbfc0dae0f539a591c0562ce

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b360f1b6b2f742781299514e99ff560d1fe9bd1bff2712894b52abe528d1fd1e
MD5 b399bc8182602006a316c0a3e5088b84
BLAKE2b-256 92f6eb15f6086c82e62d98ae9f8644c518003e34c03b2ac25683ea932bb30047

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 196ebad3a4882081f62a5bf4aeb7326aa34b110e533aab23e4374fcccb0890dc
MD5 02dbb13ac8aeb186ccb7880d9a471c21
BLAKE2b-256 43e7a170210e15434befff4dad019aa301a5c350f573b925a68dd84a57d86b43

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6546dc2c11a9df6926afcbdd8a3edec28566e4e785b915e849348c6dd9f3f490
MD5 e4f99e7ccf74ac09e309b9ad54b550a4
BLAKE2b-256 a69df864266894b67cdb5731ab531afba68713da3d6d8252f698ccab775d3f68

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 730badef9b827b368f351eacae2e82da414e13cf8bd5051b4bdfd720271a5371
MD5 796e884950efbf8c346e612941c984b8
BLAKE2b-256 5f40ac3cc2719c67c97a88d746e93fda89b9447b65a47e408fdd415c370bab2a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 bba1b0c7256ad75401c73e4b3cf09d1f176e9bd4248f0d3112170fb2ec4db067
MD5 578c64f2f58e49163e5b435a8501408c
BLAKE2b-256 3248f605bad3e610efe05a51b56698578f7a98f900513a4bad2c9f12df845cd6

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 913d6e7956c3a671de3b05ccb66b11bc293f56bfdef040583a7221d9e22a2e35
MD5 6363763dfa8b09826e0fde808c4529b3
BLAKE2b-256 edbe49a3f999dc91f1a653847f38c34763dcdeaa8a327f3665bdfe9bf5555109

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page