Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.13.1.tar.gz (57.2 MB view details)

Uploaded Source

Built Distributions

scipy-1.13.1-cp312-cp312-win_amd64.whl (45.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scipy-1.13.1-cp312-cp312-musllinux_1_1_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

scipy-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scipy-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scipy-1.13.1-cp312-cp312-macosx_12_0_arm64.whl (30.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scipy-1.13.1-cp312-cp312-macosx_10_9_x86_64.whl (39.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scipy-1.13.1-cp311-cp311-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.13.1-cp311-cp311-musllinux_1_1_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.13.1-cp311-cp311-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.13.1-cp310-cp310-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.13.1-cp310-cp310-musllinux_1_1_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.13.1-cp310-cp310-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.13.1-cp39-cp39-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.13.1-cp39-cp39-musllinux_1_1_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.13.1-cp39-cp39-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl (39.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.13.1.tar.gz.

File metadata

  • Download URL: scipy-1.13.1.tar.gz
  • Upload date:
  • Size: 57.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.1.tar.gz
Algorithm Hash digest
SHA256 095a87a0312b08dfd6a6155cbbd310a8c51800fc931b8c0b84003014b874ed3c
MD5 f9d133bf0da7aade287b775bf1081acb
BLAKE2b-256 ae0048c2f661e2816ccf2ecd77982f6605b2950afe60f60a52b4cbbc2504aa8f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: scipy-1.13.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 45.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cdd7dacfb95fea358916410ec61bbc20440f7860333aee6d882bb8046264e949
MD5 fa15b04f9f4249a9917b97a760de8f70
BLAKE2b-256 3edf963384e90733e08eac978cd103c34df181d1fec424de383cdc443f418dd4

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2ac65fb503dad64218c228e2dc2d0a0193f7904747db43014645ae139c8fad16
MD5 702c8231e4938c4ac97eaf7314e80b3b
BLAKE2b-256 0b009f54554f0f8318100a71515122d8f4f503b1a2c4b4cfab3b4b68c0eb08fa

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de3ade0e53bc1f21358aa74ff4830235d716211d7d077e340c7349bc3542e884
MD5 810a8f8f9c98cff4866e809d4d0d43b0
BLAKE2b-256 88ab6ecdc526d509d33814835447bbbeedbebdec7cca46ef495a61b00a35b4bf

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 949ae67db5fa78a86e8fa644b9a6b07252f449dcf74247108c50e1d20d2b4627
MD5 3b8e1288f9b0d22ceaa8bba1bef23e81
BLAKE2b-256 e7cb26e4a47364bbfdb3b7fb3363be6d8a1c543bcd70a7753ab397350f5f189a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 017367484ce5498445aade74b1d5ab377acdc65e27095155e448c88497755a5d
MD5 ac1c6ae3d11b1d6c56a08c66ed5dc9f6
BLAKE2b-256 dc5a2043a3bde1443d94014aaa41e0b50c39d046dda8360abd3b2a1d3f79907d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d72782f39716b2b3509cd7c33cdc08c96f2f4d2b06d51e52fb45a19ca0c86a1
MD5 0f67f286973cc4fd6407ab2104952388
BLAKE2b-256 f27bfb6b46fbee30fc7051913068758414f2721003a89dd9a707ad49174e3843

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.13.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5713f62f781eebd8d597eb3f88b8bf9274e79eeabf63afb4a737abc6c84ad37b
MD5 f426ffa7e53c6873b4fd4ba236b9ba06
BLAKE2b-256 4a484513a1a5623a23e95f94abd675ed91cfb19989c58e9f6f7d03990f6caf3d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 45484bee6d65633752c490404513b9ef02475b4284c4cfab0ef946def50b3f59
MD5 c6eaa56f6938137e2a165e56656110eb
BLAKE2b-256 d910f9b43de37e5ed91facc0cfff31d45ed0104f359e4f9a68416cbf4e790241

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a78b4b3345f1b6f68a763c6e25c0c9a23a9fd0f39f5f3d200efe8feda560a5fa
MD5 b56ce65147672896bac3973414a1bfcd
BLAKE2b-256 3607035d22ff9795129c5a847c64cb43c1fa9188826b59344fee28a3ab02e283

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e89369d27f9e7b0884ae559a3a956e77c02114cc60a6058b4e5011572eea9299
MD5 8aabe0e02b4aed01b110dd72ae2ac77b
BLAKE2b-256 80ba8be64fe225360a4beb6840f3cbee494c107c0887f33350d0a47d55400b01

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 54f430b00f0133e2224c3ba42b805bfd0086fe488835effa33fa291561932326
MD5 79cd34821a4b2c7f2212e4e1d83b5962
BLAKE2b-256 ba9242476de1af309c27710004f5cdebc27bec62c204db42e05b23a302cb0c9a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27e52b09c0d3a1d5b63e1105f24177e544a222b43611aaf5bc44d4a0979e32f9
MD5 71b69983253909dd848d266acaa4c3e8
BLAKE2b-256 b4154a4bb1b15bbd2cd2786c4f46e76b871b28799b67891f23f455323a0cdcfb

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.13.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2831f0dc9c5ea9edd6e51e6e769b655f08ec6db6e2e10f86ef39bd32eb11da54
MD5 e3e3fb9a9e418659d03f8f97d543dd8a
BLAKE2b-256 1230df7a8fcc08f9b4a83f5f27cfaaa7d43f9a2d2ad0b6562cced433e5b04e31

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eccfa1906eacc02de42d70ef4aecea45415f5be17e72b61bafcfd329bdc52e94
MD5 9314a4047cc04f7069d00389d9583530
BLAKE2b-256 49a5bb9ded8326e9f0cdfdc412eeda1054b914dfea952bda2097d174f8832cc0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f26264b282b9da0952a024ae34710c2aff7d27480ee91a2e82b7b7073c24722f
MD5 6b6eb85ba21058110963346d28134ee4
BLAKE2b-256 a3ba7255e5dc82a65adbe83771c72f384d99c43063648456796436c9a5585ec3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cfa31f1def5c819b19ecc3a8b52d28ffdcc7ed52bb20c9a7589669dd3c250989
MD5 f09f7fe2095b98afa5686c2d8c87d95a
BLAKE2b-256 c0669cd4f501dd5ea03e4a4572ecd874936d0da296bd04d1c45ae1a4a75d9c3a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d605e9c23906d1994f55ace80e0125c587f96c020037ea6aa98d01b4bd2e222f
MD5 17a4f2ce33938cadec7d321392cf8c55
BLAKE2b-256 d533f1307601f492f764062ce7dd471a14750f3360e33cd0f8c614dae208492c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20335853b85e9a49ff7572ab453794298bcf0354d8068c5f6775a0eabf350aca
MD5 a37e11833ce6ab3b1ed86f7a3e4e4e28
BLAKE2b-256 335941b2529908c002ade869623b87eecff3e11e3ce62e996d0bdcb536984187

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.13.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 392e4ec766654852c25ebad4f64e4e584cf19820b980bc04960bca0b0cd6eaa2
MD5 5583212c66c8c8c47fdfa9b7746dcc54
BLAKE2b-256 3e77dab54fe647a08ee4253963bcd8f9cf17509c8ca64d6335141422fe2e2114

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a014c2b3697bde71724244f63de2476925596c24285c7a637364761f8710891c
MD5 c8e5f9d47abecfe1ba610503dcd5e533
BLAKE2b-256 8d021165905f14962174e6569076bcc3315809ae1291ed14de6448cc151eedfd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 637e98dcf185ba7f8e663e122ebf908c4702420477ae52a04f9908707456ba4d
MD5 22c2fc6f98aecc7f7dc1d4c30b30c806
BLAKE2b-256 35f5d0ad1a96f80962ba65e2ce1de6a1e59edecd1f0a7b55990ed208848012e0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d533654b7d221a6a97304ab63c41c96473ff04459e404b83275b60aa8f4b7004
MD5 d4c0be981c8f70af7bfe3ebd3a1ff3b8
BLAKE2b-256 6d0faaa55b06d474817cea311e7b10aab2ea1fd5d43bc6a2861ccc9caec9f418

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8335549ebbca860c52bf3d02f80784e91a004b71b059e3eea9678ba994796a24
MD5 ec33f6d236073d37491dedf5aad07e8e
BLAKE2b-256 5cc0e71b94b20ccf9effb38d7147c0064c08c622309fd487b1b677771a97d18c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 436bbb42a94a8aeef855d755ce5a465479c721e9d684de76bf61a62e7c2b81d5
MD5 243053498a2d35fea466da3e1b8e6b97
BLAKE2b-256 7f29c2ea58c9731b9ecb30b6738113a95d147e83922986b34c685b8f6eefde21

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page